129
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Hemoglobin-inorganic hybrid nanoflowers: Synthesis and applications for carbene N–H insertion reaction

, , , , &
Pages 308-315 | Received 08 Jan 2023, Accepted 14 Mar 2023, Published online: 05 Apr 2023

References

  • Alfaro VS, Waheed SO, Palomino H, Knorrscheidt A, Weissenborn M, Christov CZ, Lehnert N. 2022. YfeX – a new platform for carbene transferase development with high intrinsic reactivity. Chem Eur J. 28:202201474.
  • Altinkaynak C, Tavlasoglu S, Özdemir N, Ocsoy I. 2016. A new generation approach in enzyme immobilization: organic–inorganic hybrid nanoflowers with enhanced catalytic activity and stability. Enzyme Microb Technol. 93–94:105–112.
  • Bilal M, Asgher M, Iqbal M, Hu HB, Zhang XH. 2016. Chitosan beads immobilized manganese peroxidase catalytic potential for detoxification and decolorization of textile effluent. Int J Biol Macromol. 89:181–189.
  • Bolivar JM, Woodley JM, Fernandez-Lafuente R. 2022. Is enzyme immobilization a mature discipline? Some critical considerations to capitalize on the benefits of immobilization. Chem Soc Rev. 51(15):6251–6290.
  • Bolm C, Kasyan A, Drauz K, Günther K, Raabe G. 2000. α-Trialkylsilyl-substituted α-amino acids. Angew Chem Int Ed. 39:2288–2290.
  • Carballares D, Fernandez-Lafuente R, Rocha-Martin J. 2022. Immobilization-stabilization of the dimeric D-amino acid oxidase. Process Biochem. 122:120–128.
  • Chen K, Zhang SQ, Brandenberg OF, Hong X, Arnold FH. 2018. Alternate heme ligation steers activity and selectivity in engineered cytochrome P450-catalyzed carbene-transfer reactions. J Am Chem Soc. 140(48):16402–16407.
  • da Costa FP, Cipolatti EP, Furig A, Henriques RO. 2022. Nanoflowers: a new approach of enzyme immobilization. Chem Rec. 22:202100293.
  • Davies JR, Kane PD, Moody CJ. 2004. N–H Insertion reactions of rhodium carbenoids. Part 5: a convenient route to 1,3-azoles. Tetrahedron. 60:3967–3977.
  • Frohnmeyer H, Elling L. 2023. Enzyme cascades for the synthesis of nucleotide sugars: updates to recent production strategies. Carbohydr Res. 523:108727.
  • Garcia-Galan C, Berenguer-Murcia Á, Fernandez-Lafuente R, Rodrigues RC. 2011. Potential of different enzyme immobilization strategies to improve enzyme performance. Adv Synth Catal. 353:2885–2904.
  • Ge J, Lei JD, Zare RN. 2012. Protein–inorganic hybrid nanoflowers. Nat Nanotechnol. 7(7):428–432.
  • Goldring JPD. 2019. Measuring protein concentration with absorbance, Lowry, Bradford Coomassie Blue, or the Smith bicinchoninic acid assay before electrophoresis. Methods Mol Biol. 1855:31–39.
  • Guimaraes JR, Carballares D, Rocha-Martin J, Tardioli PW, Fernandez-Lafuente R. 2022. The immobilization protocol greatly alters the effects of metal phosphate modification on the activity/stability of immobilized lipases. Int J Biol Macromol. 222(Pt B):2452–2466.
  • Hult K, Berglund P. 2007. Enzyme promiscuity: mechanism and applications. Trends Biotechnol. 25(5):231–238.
  • Humble MS, Berglund P. 2011. Biocatalytic promiscuity. J Org Chem. 2011:3391–3401.
  • Khersonsky O, Roodveldt C, Tawfik DS. 2006. Enzyme promiscuity: evolutionary and mechanistic aspects. Curr Opin Chem Biol. 10:498–508.
  • Lee SW, Cheon SA, Kim MI, Park TJ. 2015. Organic–inorganic hybrid nanoflowers: types, characteristics, and future prospects. J Nanobiotechnology. 13:54.
  • Li FX, Li ZQ, Tang XY, Cao XY, Wang CY, Li JL, Wang L. 2019. Hemoglobin: a new biocatalyst for the synthesis of 2-substituted benzoxazoles via oxidative cyclization. ChemCatChem. 11:1192–1195.
  • Li FX, Tang XY, Xu YN, Wang CY, Wang ZJ, Li ZQ, Wang L. 2020. A dual-protein cascade reaction for the regioselective synthesis of quinoxalines. Org Lett. 22(10):3900–3904.
  • Liese A, Hilterhaus L. 2013. Evaluation of immobilized enzymes for industrial applications. Chem Soc Rev. 42(15):6236–6249.
  • Lima PJM, da Silva RM, Neto C, Gomes ESNC, Souza J, Nunes YL, Sousa D, Santos JC. 2021. An overview on the conversion of glycerol to value-added industrial products via chemical and biochemical routes. Biotechnol Appl Biochem. 69:2794–2818.
  • Martin CR, Kohli P. 2003. The emerging field of nanotube biotechnology. Nat Rev Drug Discov. 2(1):29–37.
  • Matsushita H, Lee SH, Yoshida K, Clapham B, Koch G, Zimmermann J, Janda KD. 2004. N–H insertion reactions of boc-amino acid amides: solution- and solid-phase synthesis of pyrazinones and pyrazines. Org Lett. 6(24):4627–4629.
  • Miao Y, Rahimi M, Geertsema EM, Poelarends GJ. 2015. Recent developments in enzyme promiscuity for carbon–carbon bond-forming reactions. Curr Opin Chem Biol. 25:115–123.
  • Moore EJ, Steck V, Bajaj P, Fasan R. 2018. Chemoselective cyclopropanation over carbene Y–H insertion catalyzed by an engineered carbene transferase. J Org Chem. 83(14):7480–7490.
  • Moreira KS, Moura LS, Monteiro RRC, de Oliveira ALB, Valle CP, Freire TM, Fechine PBA, de Souza MCM, Fernandez-Lorente G, Guisan JM, et al. 2020. Optimization of the production of enzymatic biodiesel from residual babassu oil (Orbignya sp.) via RSM. Catalysts. 10(4):414.
  • Morilla ME, Díaz-Requejo MM, Belderrain TR, Nicasio MC, Trofimenko S, Perez PJ. 2002. Catalytic insertion of diazo compounds into N–H bonds: the copper alternative. Chem Commun. 24:2998–2999.
  • Ortiz de Montellano PR, Catalano CE. 1985. Epoxidation of styrene by hemoglobin and myoglobin. Transfer of oxidizing equivalents to the protein surface. J Org Chem. 260:9265–9271.
  • Qiu X, Wang SS, Miao SS, Suo HB, Xu HJ, Hu Y. 2021. Co-immobilization of laccase and ABTS onto amino-functionalized ionic liquid-modified magnetic chitosan nanoparticles for pollutants removal. J Hazard Mater. 401:123353.
  • Rai SK, Singh A, Kauldhar BS, Yadav SK. 2023. Robust nano-enzyme conjugates for the sustainable synthesis of a rare sugar d-tagatose. Int J Biol Macromol. 231:123406.
  • Rodrigues AFS, da Silva AF, da Silva FLB, dos Santos KM, de Oliveira MP, Nobre MMR, Catumba BD, Sales MB, Silva ARM, Braz AKS, et al. 2023. A scientometric analysis of research progress and trends in the design of laccase biocatalysts for the decolorization of synthetic dyes. Process Biochem. 126:272–291.
  • Rodrigues RC, Berenguer-Murcia Á, Carballares D, Morellon-Sterling R, Fernández-Lafuente R. 2021. Stabilization of enzymes via immobilization: multipoint covalent attachment and other stabilization strategies. Biotechnol Adv. 52:107821.
  • Rodrigues RC, Ortiz C, Berenguer-Murcia Á, Torres R, Fernández-Lafuente R. 2013. Modifying enzyme activity and selectivity by immobilization. Chem Soc Rev. 42(15):6290–6307.
  • Rong J, Zhang T, Qiu FX, Zhu Y. 2017. Preparation of efficient, stable, and reusable laccase–Cu3(PO4)2 hybrid microspheres based on copper foil for decoloration of Congo red. RSC Adv. 6:104265–104272.
  • Shcharbin D, Halets-Bui I, Abashkin V, Dzmitruk V, Loznikova S, Odabaşı M, Acet Ö, Önal B, Özdemir N, Shcharbina N, et al. 2019. Hybrid metal-organic nanoflowers and their application in biotechnology and medicine. Colloids Surf B Biointerfaces. 182:110354.
  • Sreenilayam G, Fasan R. 2015. Myoglobin-catalyzed intermolecular carbene N–H insertion with arylamine substrates. Chem Commun. 51(8):1532–1534.
  • Sriwong KT, Matsuda T. 2022. Recent advances in enzyme immobilization utilizing nanotechnology for biocatalysis. Org Process Res Dev. 26:1857–1877.
  • Teng JK, Yue LL, Li BL, Yang JM, Yang CT, Yang T, Zhi XY, Liu XQ, Zhao Y, Zhang J. 2023. Synthesis of cyclodextrin‐based temperature/enzyme‐responsive nanoparticles and application in antitumor drug delivery. J Mol Struct. 1274:134596.
  • Thangaraj B, Solomon PR. 2019. Immobilization of lipases – a review. Part I: enzyme immobilization. ChemBioEng Rev. 6:157–166.
  • Tschirret-Guth RA, Ortiz de Montellano PR. 1996. Protein radicals in myoglobin dimerization and myoglobin-catalyzed styrene epoxidation. Arch Biochem Biophys. 335(1):93–101.
  • Turk M, Altinkaynak C, Yangin N, Özdemir N. 2022. Fabrication of myoglobin hybrid nanoflowers for decolorization process of Evans blue and Congo red. Mater Lett. 325:132853.
  • Tyagi V, Bonn RB, Fasan R. 2015. Intermolecular carbene S–H insertion catalysed by engineered myoglobin-based catalysts. Chem Sci. 6(4):2488–2494.
  • Ur Rehman H, Aman A, Nawaz MA, Karim A, Ghani M, Baloch AH, Ul Qader SA. 2016. Immobilization of pectin depolymerising polygalacturonase using different polymers. Int J Biol Macromol. 82:127–133.
  • Virgen-Ortiz JJ, Peirce S, Tacias-Pascacio VG, Cortes-Corberan V, Marzocchella A, Russo ME, Fernandez-Lafuente R. 2016. Reuse of anion exchangers as supports for enzyme immobilization: reinforcement of the enzyme-support multiinteraction after enzyme inactivation. Process Biochem. 51:1391–1396.
  • Wan XM, Tang SS, Xiang XR, Huang H, Hu Y. 2017. Immobilization of Candida antarctica lipase B on functionalized ionic liquid modified MWNTs. Appl Biochem Biotechnol. 183(3):807–819.
  • Wang ZJ, Peck NE, Renata H, Arnold FH. 2014. Cytochrome P450-catalyzed insertion of carbenoids into N–H bonds. Chem Sci. 5(2):598–601.
  • Wolf MW, Vargas DA, Lehnert N. 2017. Engineering of RuMb: toward a green catalyst for carbene insertion reactions. Inorg Chem. 56(10):5623–5635.
  • Zahirinejad S, Hemmati R, Homaei A, Dinari A, Hosseinkhani S, Mohammadi S, Vianello F. 2021. Nano-organic supports for enzyme immobilization: scopes and perspectives. Colloids Surf B Biointerfaces. 204:111774.
  • Zhang L, Ma YW, Wang CY, Wang Z, Chen X, Li MX, Zhao R, Wang L. 2018. Application of dual-enzyme nanoflower in the epoxidation of alkenes. Process Biochem. 74:103–107.
  • Zou B, Hu Y, Yu DH, Xia JJ, Tang SS, Liu WM, Huang H. 2010. Immobilization of porcine pancreatic lipase onto ionic liquid modified mesoporous silica SBA-15. Biochem Eng J. 53:150–153.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.