81
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Lactobionic acid production via mutant cellobiose dehydrogenase/laccase continuous enzymatic regeneration of electron acceptors

, ORCID Icon, ORCID Icon & ORCID Icon
Pages 316-323 | Received 05 Apr 2022, Accepted 21 Mar 2023, Published online: 05 Apr 2023

References

  • Alonso S, Rendueles M, Díaz M. 2011. Efficient lactobionic acid production from whey by Pseudomonas taetrolens under pH-shift conditions. Bioresour Technol. 102(20):9730–9736.
  • Alonso S, Rendueles M, Díaz M. 2017. Tunable decoupled overproduction of lactobionic acid in Pseudomonas taetrolens through temperature-control strategies. Process Biochem. 58:9–16.
  • Balaz AMJ, Blazic M, Popovic N, Prodanovic OL, Ostafe RV, Fischer R, Prodanovic RM. 2020. Expression, purification and characterization of cellobiose dehydrogenase mutants from Phanerochaete chrysosporium in Pichia pastoris KM71H strain. J Serb Chem Soc. 85(1):10.
  • Baminger U, Ludwig R, Galhaup C, Leitner C, Kulbe K, Haltrich D. 2001. Continuous enzymatic regeneration of redox mediators used in biotransformation reactions employing flavoproteins. J Mol Catal B Enzym. 11(4):541–550.
  • Baminger U, Nidetzky B, Kulbe KD, Haltrich D. 1999. A simple assay for measuring cellobiose dehydrogenase activity in the presence of laccase. J Microbiol Methods. 35(3):253–259.
  • Blažić M, Balaž AM, Prodanović O, Popović N, Ostafe R, Fischer R, Prodanović R. 2019. Directed evolution of cellobiose dehydrogenase on the surface of yeast cells using resazurin-based fluorescent assay. Appl Sci. 9(7):1413.
  • Dhariwal A, Mavrov V, Schröder I. 2006. Production of lactobionic acid with process integrated electrochemical enzyme regeneration and optimisation of process variables using response surface methods (RSM). J Mol Catal B Enzym. 42:64–69.
  • Fischer E, Meyer J. 1889. Oxydation des Milchzuckers. Ber Dtsch Chem Ges. 22(1):361–364.
  • Frasconi M, Favero G, Boer H, Koivula A, Mazzei F. 2010. Kinetic and biochemical properties of high and low redox potential laccases from fungal and plant origin. Biochim Biophys Acta. 1804(4):899–908.
  • Gangwar R, Rasool S, Mishra S. 2016. Evaluation of cellobiose dehydrogenase and laccase containing culture fluids of Termitomyces sp. OE147 for degradation of Reactive blue 21. Biotechnol Rep. 12:52–61.
  • Gerling K. 1998. Large-scale production of lactobionic acid - use and new applications. International Whey Conference, Chicago (USA), 27-29. International Dairy Federation, 1998.
  • Green BA, Yu RJ, Van Scott EJ. 2009. Clinical and cosmeceutical uses of hydroxyacids. Clin Dermatol. 27(5):495–501.
  • Guibert EE, Petrenko AY, Balaban CL, Somov AY, Rodriguez JV, Fuller BJ. 2011. Organ preservation: current concepts and new strategies for the next decade. Transfus Med Hemother. 38(2):125–142.
  • Gutierrez L-F, Hamoudi S, Belkacemi K. 2011. Selective production of lactobionic acid by aerobic oxidation of lactose over gold crystallites supported on mesoporous silica. Appl Catal A. 402(1):94–103.
  • Gutiérrez L-F, Hamoudi S, Belkacemi K. 2012a. Effective gold catalyst supported on mesoporous silica decorated by ceria for the synthesis of high value lactobionic acid. Appl Catal A. 425-426:213–223.
  • Gutiérrez L-F, Hamoudi S, Belkacemi K. 2012b. Lactobionic acid: a high value-added lactose derivative for food and pharmaceutical applications. Int Dairy J. 26(2):103–111.
  • Henriksson G, Johansson G, Pettersson G. 2000. A critical review of cellobiose dehydrogenases. J Biotechnol. 78(2):93–113.
  • Kankare JJ. 1973. Determination of composition of mixtures of weak acids by potentiostatic titration. Anal Chem. 45(11):1877–1880.
  • Ludwig R, Ozga M, Zámocky M, Peterbauer C, Kulbe K, Haltrich D. 2004. Continuous enzymatic regeneration of electron acceptors used by flavoenzymes: cellobiose dehydrogenase-catalyzed production of lactobionic acid as an example. Biocatal Biotransform. 22(2):97–104.
  • Nordkvist M, Nielsen PM, Villadsen J. 2007. Oxidation of lactose to lactobionic acid by a Microdochium nivale carbohydrate oxidase: kinetics and operational stability. Biotechnol Bioeng. 97(4):694–707.
  • Pedruzzi I, da Silva EA, Rodrigues AE. 2011. Production of lactobionic acid and sorbitol from lactose/fructose substrate using GFOR/GL enzymes from Zymomonas mobilis cells: a kinetic study. Enzyme Microb Technol. 49(2):183–191.
  • Rezaei S, Shahverdi AR, Faramarzi MA. 2017. Isolation, one-step affinity purification, and characterization of a polyextremotolerant laccase from the halophilic bacterium Aquisalibacillus elongatus and its application in the delignification of sugar beet pulp. Bioresour Technol. 230:67–75.
  • Senthivelan T, Kanagaraj J, Panda RC, Narayani T. 2019. Screening and production of a potential extracellular fungal laccase from Penicillium chrysogenum: media optimization by response surface methodology (RSM) and central composite rotatable design (CCRD). Biotechnol Rep. 23:e00344.
  • Splechtna B, Petzelbauer I, Baminger U, Haltrich D, Kulbe K, Nidetzky B. 2001. Production of a lactose-free galacto-oligosaccharide mixture by using selective enzymatic oxidation of lactose into lactobionic acid. Enzyme Microb Technol. 29(6):434–440.
  • Sulej J, Osińska-Jaroszuk M, Jaszek M, Grąz M, Kutkowska J, Pawlik A, Chudzik A, Bancerz R. 2019. Antimicrobial and antioxidative potential of free and immobilised cellobiose dehydrogenase isolated from wood degrading fungi. Fungal Biol. 123(12):875–886.
  • Thurston CF. 1994. The structure and function of fungal laccases. Microbiology. 140(1):19–26.
  • Van Hecke W, Ludwig R, Dewulf J, Auly M, Messiaen T, Haltrich D, Van Langenhove H. 2009. Bubble-free oxygenation of a bi-enzymatic system: effect on biocatalyst stability. Biotechnol Bioeng. 102(1):122–131.
  • Van Hecke W, Bhagwat A, Ludwig R, Dewulf J, Haltrich D, Van Langenhove H. 2009. Kinetic modeling of a bi-enzymatic system for efficient conversion of lactose to lactobionic acid. Biotechnol Bioeng. 102(5):1475–1482.
  • Van Hecke W, Haltrich D, Frahm B, Brod H, Dewulf J, Van Langenhove H, Ludwig R. 2011. A biocatalytic cascade reaction sensitive to the gas–liquid interface: modeling and upscaling in a dynamic membrane aeration reactor. J Mol Catal B Enzym. 68(2):154–161.
  • Yang J, Xu P, Long L, Ding S. 2021. Production of lactobionic acid using an immobilized cellobiose dehydrogenase/laccase system on magnetic chitosan spheres. Process Biochem. 100:1–9.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.