199
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Production, characterization, and application of a new chymotrypsin-like protease from Pycnoporus sanguineus

, , , , , , & ORCID Icon show all
Pages 324-333 | Received 09 Jan 2023, Accepted 23 Mar 2023, Published online: 05 Apr 2023

References

  • Abdeshahian P, Kadier A, Rai PK, Da Silva SS. 2020. Lignocellulose as a renewable carbon source for microbial synthesis of different enzymes. In: Avinash P, Ingle, Anuj Kumar Chandel, Silvio Silvério da Silva, editors. Lignocellulosic Biorefining Technologies. 185–202. First published:10 January 2020 Print ISBN:9781119568827 |Online ISBN:9781119568858 |DOI:10.1002/9781119568858 © 2020 John Wiley & Sons Ltd.
  • Abu-Khudir R, Salem MM, Allam NG, Ali EM. 2019. Production, partial purification, and biochemical characterization of a thermotolerant alkaline metallo-protease from Staphylococcus sciuri. Appl Biochem Biotechnol. 189:87–102.
  • Aguilar JGS, Sato HH. 2018. Microbial proteases: production and application in obtaining protein hydrolysates. Food Res Int. 103:253–262.
  • Ahmed IAM, Morishima I, Babiker, EE, Mori, N. 2009. Dubiumin, a chymotrypsin-like serine protease from the seeds of Solanum dubium Fresen. Phytochemistry. 70:483–491.
  • Ahmed SA, Wehaidy HR, Ibrahim OA, Abd El Ghani S, ElHofi MA. 2016. Novel milk-clotting enzyme from Bacillus stearothermophilus as a coagulant in UF-white soft cheese. Biocatal Agric Biotechnol. 7:241–249.
  • Ali N, Ullah N, Qasim M, Rahman H, Khan SN, Sadig A, et al. 2016. Molecular characterization and growth optimization of halo-tolerant protease producing Bacillus subtilis Strain BLK-1.5 isolated from salt mines of Karak, Pakistan. Extremophiles. 20:395–402.
  • Amira AB, Besbes S, Attia H, Blecker C. 2017. Milk-clotting properties of plant rennets and their enzymatic, rheological, and sensory role in cheese making: a review. Int J Food Prop. 20: S76–S93.
  • Ao XL, Yu X, Wu DT, Li C, Zhang T, Liu SL, et al. 2018. Purification and characterization of neutral protease from Aspergillus oryzae Y1 isolated from naturally fermented broad beans. AMB Express. 8:1–10.
  • Apprich S, Tirpanalan Ö, Hell J, Reisinger M, Böhmdorfer S, Siebenhandl-Ehn S, Kneifel W. 2014. Wheat bran-based biorefinery 2: valorization of products. LWT Food Sci Technol. 56:222–231.
  • Boiani M, Fenelon M, FitzGerald RJ, Kelly PM. 2018. Use of 31P NMR and FTIR to investigate key milk mineral equilibria and their interactions with micellar casein during heat treatment. Int Dairy J. 81:12–18.
  • Borderes J, Costa A, Guedes A, Tavares LBB. 2011. Antioxidant activity of the extracts from Pycnoporus sanguineus mycelium. Braz. Arch. Biol. Technol. 54:1167–1174.
  • Bradford MM. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 72:248–254.
  • Braga-Neto R. 2013. Pycnoporus sanguineus (v1) in Biogeography of Flora and Fungi in Brazil [Portuguese]. INCT Herbário Virtual (http://biogeo.inct.florabrasil.net/proc/4582).
  • Britten M, Giroux HJ. 2022. Rennet coagulation of heated milk: a review. Int Dairy J. 124:105179
  • Cavalcanti MTH, Teixeira MFS, Lima Filho JL, Porto ALF. 2004. Partial purification of new milk-clotting enzyme produced by Nocardiopsis sp. Bioresour Technol. 93(1):29–35.
  • Chauhan JV, Mathukiya RP, Singh SP, Gohel SD. 2021. Two steps purification, biochemical characterization, thermodynamics and structure elucidation of thermostable alcaline serine protease from Nocardiopsis alba strain OM-5. Int J Biol Macromol. 169:39–50.
  • Chimbekujwo KI, Ja’afaru MI, Adeyemo OM. 2020. Purification, characterization and optimization conditions of protease produced by Aspergillus brasiliensis strain BCW2. Sci Afr. 8:e00398
  • Chinmayee CV, Vidya C, Rani A, Singh SA. 2019. Production of highly active fungal milk-clotting enzyme by solid-state fermentation. Prep Biochem Biotechnol. 49(9):858–867.
  • Colombo ML, Fernández A, Cimino CV, Liggieri C, Bruno M, Faro C, Veríssimo PC, Vairo-Cavalli S. 2018. Miniature cheeses made with blends of chymosin and a vegetable rennet from flowers of Silybum marianum: enzymatic characterization of the flower-coagulant peptidase. Food Chem. 266:223–231.
  • Corredig M, Salvatore E. 2016. Enzymatic coagulation of milk. In Advanced dairy chemistry. New York, NY: Springer. p. 287–307.
  • Daroit DJ, Correa APF, Canales MM, Coelho JG, Hidalgo ME, Tichota DM, et al. 2012. Physicochemical properties and biological activities of ovine caseinate hydrolysate. Dairy Sci Technol. 92:335–351.
  • Di Cera E. 2009. Serine proteases. IUBMB Life. 61(5):510–515.
  • Elleuch J, Kacem FH, Amor FB, Hadrich B, Michaud P, Fendri I, Abdelkafi S. 2021. Extracellular neutral protease from Arthrospira platensis: production, optimization and partial characterization. Int J Biol Macromol. 167:1491–1498.
  • Ferreira AN, Ribeiro DDS, Santana RA, Felix ACS, Alvarez LDG, Lima EDO. 2017. Production of lipase from Penicillium sp. using waste oils and Nopalea cochenillifera. Chem Eng Commun. 204:1167–1173.
  • Gambato G, Todescato K, Pavão EM, Scortegagna A, Fontana RC, Salvador M, Camassola M. 2016. Evaluation of productivity and antioxidant profile of solid-state cultivated macrofungi Pleurotus albidus and Pycnoporus sanguineus. Bioresour Technol. 207:46–51.
  • Gaucheron F. 2011. Milk salts: distribution and analysis. In J. W. Fuquay (Ed.), Encyclopedia of dairy sciences 2nd ed. San Diego, CA, USA: Elsevier Inc. 908–916
  • Ghodrat A, Yaghobfar A, Ebrahimnezhad Y, Aghdam SH, Ghorbani A. 2017. In vitro binding capacity of organic (wheat bran and rice bran) and inorganic (perlite) sources for Mn, Zn, Cu, and Fe. J. Appl Anim Res. 45:80–84.
  • Gupta R, Beg QK, Lorenz P. 2002. Bacterial alkaline proteases: molecular approaches and industrial applications. Appl Microbiol Biotechnol. 59(1):15–32.
  • Hajam TA, Saleem H. 2022. Phytochemistry, biological activities, industrial and traditional uses of fig (Ficus carica): a review. Chem Biol Interact. 368:110237.
  • Laemmli UK. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 227(5259):680–685.
  • Law BA, Tamime A. 2010. Cheese-ripening and cheese flavour technology. Technology of cheesemaking. MA, USA:Blackwell. p. 231–359.
  • Leite Júnior BRC, Tribst AAL, Yada RY, Cristianini M. 2018. Milk-clotting activity of high pressure processed coagulants: evaluation at different pH and temperatures and pH influence on the stability. Innov Food Sci Emerg Technol. 47:384–389.
  • Leite P, Silva C, Salgado JM, Belo I. 2019. Simultaneous production of lignocellulolytic enzymes and extraction of antioxidant compounds by solid-state fermentation of agro-industrial wastes. Ind Crops Prod. 137:315–322.
  • Lemes AC, Pavon Y, Lazzaroni S, Rozycki S, Brandelli A, Kalil SJ. 2016. A new milk-clotting enzyme produced by Bacillus sp. P45 applied in cream cheese development. LWT- Food Sci. Technol. 66:217–224.
  • Li Y, Liang S, Zhi DJ, Chen P, Su F, Li HY. 2012. Purification and characterization of Bacillus subtilis milk-clotting enzyme from Tibet Plateau and its potential use in yak dairy industry. Eur Food Res Technol. 234:733–741.
  • Lmdakim MM, Hassan Z, Aween MM, Elshaafi IM, Muhialdin BJ. 2015. Milk clotting and proteolytic activity of enzyme preparation from Pediococcus acidilactici SH for dairy products. Afr. J. Biotech. 14(2):133–142.
  • Lomascolo A, Boukhris EU, Gimbert IH, Sigoillot JC, Meessen LL. 2011. Peculiarities of Pycnoporus species for applications in biotechnology. Appl Microbiol Biotechnol. 92(6):1129–1149.
  • Lucey JA. 2011. Cheese: rennet-induced coagulation of milk. In J. W. Fuquay (Ed.), Encyclopedia of dairy sciences 2nd ed. San Diego, CA, USA: Elsevier Inc;p. 579–84.
  • Lucey JA. 2002. Formation and physical properties of milk protein gels. J Dairy Sci. 85(2):281–294.
  • Manzano MAM, Hernandez JMM, Suarez JCR, Llanez MDT, Cordova AFG, Cordoba BV. 2013. Sour Orange Citrus aurantium L. flowers: a new vegetable source of milk-clotting proteases. LWT Food Sci Technol. 54:325–330.
  • Maurer HR. 2001. Bromelain: biochemistry, pharmacology and medical use. Cell Mol Life Sci. 58(9):1234–1245.
  • Moudrá K, Pachlová V, Černíková M, Šopík T, Buňka F. 2017. The combined effects of fat content, calcium chloride, and coagulant concentration on the development of cheese curd structure. Int Dairy J. 73:92–97.
  • Nigam PS. 2013. Microbial enzymes with special characteristics for biotechnological applications. Biomolecules. 3(3):597–611.
  • Nogueira LS, Tavares IMdC, Santana NB, Ferrão SPB, Teixeira JM, Costa FS, Silva TP, Pereira HJV, Irfan M, Bilal M, et al. 2022. Thermostable trypsin‐like protease by Penicillium roqueforti secreted in cocoa shell fermentation: production optimization, characterization, and application in milk clotting. Biotechnol Appl Biochem. 69(5):2069–2080.
  • Ong L, Dagastine R, Kentish S, Gras SL. 2013. The effect of calcium chloride addition on the microstructure and composition of Cheddar cheese. Int Dairy J. 33:135–141.
  • Ordiales E, Benito MJ, Martín A, Fernández M, Hernández A, Córdoba M. 2013. Proteolytic effect of Cynara cardunculus rennet for use in the elaboration of ‘Torta del Casar’ cheese. J Dairy Res. 80(4):429–438. 2013
  • Pontual EV, Carvalho BE, Bezerra RS, Coelho LC, Napoleão TH, Paiva PM. 2012. Caseinolytic and milk-clotting activities from Moringa oleifera flowers. Food Chem. 135(3):1848–1854.
  • Raynal K, Remeuf F. 1998. The effect of heating on physicochemical and renneting properties of milk: a comparison between caprine, ovine and bovine milk. Int Dairy J. 8:695–706.
  • Razzaq A, Shamsi S, Ali A, Ali Q, Sajjad M, Malik A, et al. 2019. Microbial proteases applications. Front Bioeng Biotechnol. 7:110
  • Rohr CO, Levin LN, Mentaberry AN, Wirth SA. 2013. A first insight into Pycnoporus sanguineus BAFC 2126 transcriptome. PLOS One. 12:81033.
  • Silva TP, de Albuquerque FS, dos Santos CWV, Franco M, Caetano LC, Pereira HJV. 2018. Production, purification, characterization and application of a new halotolerant and thermostable endoglucanase of Botrytis ricini URM 5627. Bioresour Technol. 270:263–269.
  • Silva RR, Oliveira LCG, Juliano MA, Juliano L, Oliveira AH, Rosa JC, Cabral H. 2017. Biochemical and milk-clotting properties and mapping of catalytic subsites of extracellular aspartic peptidase from basidiomycete fungus Phanerochaete chrysosporium. Food Chem. 225:45–54.
  • Smânia A, Marques CJS, Smânia EFA, Zanetti CR, Carobrez SG, Tramonte R, Leite CL. 2003. Toxicity and antiviral activity of cinnabarin obtained from Pycnoporus sanguineus (Fr.) Murr. Phytother Res. 17(9):1069–1072.
  • Tacias-Pascacio VG, Morellon-Sterling R, Castañeda-Valbuena D, Berenguer-Murcia Á, Kamli MR, Tavano O, Fernandez-Lafuente R. 2021. Immobilization of papain: a review. Int J Biol Macromol. 188:94–113.
  • Wang X, Zhao Q, He L, Shi Y, Fan J, Chen Y, Huang A. 2022. Milk-clotting properties on bovine caseins of a novel cysteine peptidase from germinated Moringa oleifera seeds. J Dairy Sci. 105(5):3770–3781.
  • Wehaidy HR, Wahab WAA, Kholif AMM, Elaaser M, Bahgaat WK, Abdel-Naby MA. 2020. Statistical optimization of B. subtilis MK775302 milk clotting enzyme production using agroindustrial residues, enzyme characterization and application in cheese manufacture. Biocatal Agric Biotechnol. 25:101589.
  • Yadav RP, Patel A, Jagannadham M. 2011. Purification and biochemical characterization of a chymotrypsin-like serine protease from Euphorbia neriifolia Linn. Process Biochem. 46:1654–1662.
  • Yegin S, Lahore AF, Salgado AJG, Guvenc U, Goksungur Y, Tari C. 2011. Aspartic proteinases from Mucor spp. in cheese manufacturing. Appl Microbiol Biotechnol. 89(4):949–960.
  • Zanutto-Elgui MR, Vieira JCS, Prado DZd, Buzalaf MAR, Padilha PdM, Elgui de Oliveira D, Fleuri LF. 2019. Production of milk peptides with antimicrobial and antioxidant properties through fungal proteases. Food Chem. 278:823–831.
  • Zhang Y, Xia Y, Ding Z, Lai PF, Wang G, Xiong, et al. 2019. Purification and characteristics of a new milk-clotting enzyme from Bacillus licheniformis BL312. LWT Food Sci Technol. 113:108276.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.