203
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Modification of the properties of the metagenomic lipase LipC12 by engineering of the hydrophobic cavity

, , , , , & show all
Pages 334-344 | Received 08 Dec 2022, Accepted 06 Apr 2023, Published online: 05 May 2023

References

  • Almeida JM, Alnoch RC, Souza EM, Mitchell DA, Krieger N. 2020. Metagenomics: is it a powerful tool to obtain lipases for application in biocatalysis? Biochim Biophys Acta Proteins Proteom. 1868(2):e140320.
  • Alnoch RC, Martini VP, Glogauer A, Costa ACS, Piovan L, Muller-Santos M, de Souza EM, Pedrosa FO, Mitchell DA, Krieger N. 2015. Immobilization and characterization of a new regioselective and enantioselective lipase obtained from a metagenomic library. PLoS One. 10(2):e0114945.
  • Arana-Peña S, Rios NS, Carballares D, Gonçalves LRB, Fernandez-Lafuente R. 2021. Immobilization of lipases via interfacial activation on hydrophobic supports: production of biocatalysts libraries by altering the immobilization conditions. Catal Today. 362:130–140.
  • Bradford MM. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 72:248–254.
  • Carvalho A, Fonseca T, Mattos M, Oliveira M, Lemos T, Molinari F, Romano D, Serra I. 2015. Recent advances in lipase-mediated preparation of pharmaceuticals and their intermediates. Int J Mol Sci. 16(12):29682–29716.
  • Chen CS, Fujimoto Y, Girdaukas G, Sih CJ. 1982. Quantitative analyses of biochemical kinetic resolutions of enantiomers. J Am Chem Soc. 104(25):7294–7299.
  • Costa ACS, Fraiz TC, Alnoch RC, Madalozzo AD, de Oliveira ARM, Krieger N, Piovan L. 2013. Evaluation of lipases from metagenomic in kinetic resolution of secondary alcohols. Paper presented at: 15th Brazilian Meeting on Organic Synthesis (15th BMOS); Nov 10–13; Campos do Jordão, Brazil.
  • Dhake KP, Deshmukh KM, Wagh YS, Singhal RS, Bhanage BM. 2012. Investigation of steapsin lipase for kinetic resolution of secondary alcohols and synthesis of valuable acetates in non-aqueous reaction medium. J Mol Catal B Enzym. 77:15–23.
  • Dorau R, Görbe T, Humble MS. 2018. Improved enantioselectivity of subtilisin Carlsberg towards secondary alcohols by protein engineering. ChemBioChem. 19(4):338–346.
  • Durmaz E, Kuyucak S, Sezerman UO. 2013. Modifying the catalytic preference of tributyrin in Bacillus thermocatenulatus lipase through in-silico modeling of enzyme-substrate complex. Protein Eng Des Sel. 26(5):325–333.
  • Ema T. 2004. Mechanism of enantioselectivity of lipases and other synthetically useful hydrolases. Curr Org Chem. 8(11):1009–1025.
  • Fiser A, Sali A. 2003. ModLoop: automated modeling of loops in protein structures. Bioinformatics. 19(18):2500–2501.
  • Funke SA, Otte N, Eggert T, Bocola M, Jaeger KE, Thiel W. 2005. Combination of computational prescreening and experimental library construction can accelerate enzyme optimization by directed evolution. Protein Eng Des Sel. 18(11):509–514.
  • Glogauer A, Martini VP, Faoro H, Couto GH, Müller-Santos M, Monteiro RA, Mitchell DA, de Souza EM, Pedrosa FO, Krieger N. 2011. Identification and characterization of a new true lipase isolated through metagenomic approach. Microb Cell Fact. 10(1):54.
  • Gu J, Liu J, Yu H. 2011. Quantitative prediction of enantioselectivity of Candida antarctica lipase B by combining docking simulations and quantitative structure–activity relationship (QSAR) analysis. J Mol Catal B Enzym. 72(3–4):238–247.
  • Guo F, Xu H, Xu H, Yu H. 2013. Compensation of the enantioselectivity-activity trade-off in the directed evolution of an esterase from Rhodobacter sphaeroides by site-directed saturation mutagenesis. Appl Microbiol Biotechnol. 97(8):3355–3362.
  • Habulin M, Knez Z. 2009. Optimization of (R,S)-1-phenylethanol kinetic resolution over Candida antarctica lipase B in ionic liquids. J Mol Catal B Enzym. 58(1–4):24–28.
  • Ho SN, Hunt HD, Horton RM, Pullen JK, Pease LR. 1989. Site-directed mutagenesis by overlap extension using the polymerase chain reaction. Gene. 77(1):51–59.
  • Javed S, Azeem F, Hussain S, Rasul I, Siddique MH, Riaz M, Afzal M, Kouser A, Nadeem H. 2018. Bacterial lipases: a review on purification and characterization. Prog Biophys Mol Biol. 132:23–34.
  • Kim S, Chen J, Cheng T, Gindulyte A, He J, He S, Li Q, Shoemaker BA, Thiessen PA, Yu B, et al. 2021. PubChem in 2021: new data content and improved web interfaces. Nucleic Acids Res. 49(D1):D1388–D1395.
  • Laemmli U. 1970. Cleavage of Structural Proteins during the Assembly of the Head of Bacteriophage T4. Nature. 227(5259):680–685.
  • Laskowski RA, MacArthur MW, Moss DS, Thornton JM. 1993. PROCHECK: a program to check the stereochemical quality of protein structures. J Appl Crystallogr. 26(2):283–291.
  • Li D, Chen X, Chen Z, Lin X, Xu J, Wu Q. 2021. Directed evolution of lipase A from Bacillus subtilis for the preparation of enantiocomplementary sec-alcohols. Green Synth Catal. 2(3):290–294.
  • Li G, Reetz MT. 2016. Learning lessons from directed evolution of stereoselective enzymes. Org Chem Front. 3(10):1350–1358.
  • Ma J, Wu L, Guo F, Gu J, Tang X, Jiang L, Liu J, Zhou J, Yu H. 2013. Enhanced enantioselectivity of a carboxyl esterase from Rhodobacter sphaeroides by directed evolution. Appl Microbiol Biotechnol. 97(11):4897–4906.
  • Madalozzo AD, Martini VP, Kuniyoshi KK, de Souza EM, Pedrosa FO, Zanin GM, Mitchell DA, Krieger N. 2016. Synthesis of flavor esters and structured lipids by a new immobilized lipase, LipC12, obtained from metagenomics. Biocatal Agric Biotechnol. 8:294–300.
  • Madalozzo AD, Martini VP, Kuniyoshi KK, Souza EM, Pedrosa FO, Glogauer A, Zanin GM, Mitchell DA, Krieger N. 2015. Immobilization of LipC12, a new lipase obtained by metagenomics, and its application in the synthesis of biodiesel esters. J Mol Catal B Enzym. 116:45–51.
  • Maldonado MR, Alnoch RC, Almeida JM, Santos LA, Andretta AT, Ropaín RPC, Souza EM, Mitchell DA, Krieger N. 2021. Key mutation sites for improvement of the enantioselectivity of lipases through protein engineering. Biochem Eng J. 172:108047.
  • Markle TF, Rhile IJ, Mayer JM. 2011. Kinetic effects of increased proton transfer distance on proton-coupled oxidations of phenol-amines. J Am Chem Soc. 133(43):17341–17352.
  • Miranda AS, Miranda LSM, de Souza, ROMA. 2015. Lipases: valuable catalysts for dynamic kinetic resolutions. Biotechnol Adv. 33(5):372–393.
  • Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS, Olson AJ. 2009. AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. J Comput Chem. 30(16):2785–2791.
  • Petersen MTN, Fojan P, Petersen SB. 2001. How do lipases and esterases work: the electrostatic contribution. J Biotechnol. 85(2):115–147.
  • Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE. 2004. UCSF Chimera: a visualization system for exploratory research and analysis. J Comput Chem. 25(13):1605–1612.
  • Qin B, Liang P, Jia X, Zhang X, Mu M, Wang X, Ma G, Jin D, You S. 2013. Directed evolution of Candida antarctica lipase B for kinetic resolution of profen esters. Catal Commun. 38:1–5.
  • Quaglia D, Alejaldre L, Ouadhi S, Rousseau O, Pelletier JN. 2019. Holistic engineering of Cal-A lipase chain-length selectivity identifies triglyceride binding hot-spot. PLoS ONE. 14(1):e0210100.
  • Rotticci D, Rotticci-Mulder JC, Denman S, Norin T, Hult K. 2001. Improved enantioselectivity of a lipase by rational protein engineering. ChemBioChem. 2(10):766–770.
  • Sánchez DA, Alnoch RC, Tonetto GM, Krieger N, Ferreira ML. 2021. Immobilization and bioimprinting strategies to enhance the performance in organic medium of the metagenomic lipase LipC12. J Biotechnol. 342:13–27.
  • Sanger F, Nicklen S, Coulson AR. 1977. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA. 74(12):5463–5467.
  • Scheib H, Pleiss J, Kovac A, Paltauf F, Schmid RD. 1999. Stereoselectivity of Mucorales lipases toward triradylglycerols – a simple solution to a complex problem. Protein Sci. 8(1):215–221.
  • Seeliger D, De Groot BL. 2010. Ligand docking and binding site analysis with PyMOL and Autodock/Vina. J Comput Aided Mol Des. 24(5):417–422.
  • Shen JW, Qi JM, Zhang XJ, Liu ZQ, Zheng YG. 2018. Significantly increased catalytic activity of Candida antarctica lipase B for the resolution of cis-(±)-dimethyl 1-acetylpiperidine-2,3-dicarboxylate. Catal Sci Technol. 8(18):4718–4725.
  • Winkler UK, Stuckmann M. 1979. Glycogen, hyaluronate, and some other polysaccharides greatly enhance the formation of exolipase by Serratia marcescens. J Bacteriol. 138(3):663–670.
  • Wu Q, Soni P, Reetz MT. 2013. Laboratory evolution of enantiocomplementary Candida antarctica Lipase B mutants with broad substrate scope. J Am Chem Soc. 135(5):1872–1881.
  • Yang B, Wang H, Song W, Chen X, Liu J, Luo Q, Liu L. 2017. Engineering of the conformational dynamics of lipase to increase enantioselectivity. ACS Catal. 7(11):7593–7599.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.