97
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Identification and characterization of a novel thermostable transaminase (TATP) from Thermorudis peleae

, , , , , , & show all
Pages 378-387 | Received 19 Mar 2023, Accepted 05 Jul 2023, Published online: 01 Aug 2023

References

  • Bommarius AS, Paye MF. 2013. Stabilizing biocatalysts. Chem Soc Rev. 42(15):6534–6565. doi:10.1039/c3cs60137d.
  • Buß O, Buchholz PCF, Gräff M, Klausmann P, Rudat J, Pleiss J. 2018. The ω‐transaminase engineering database (oTAED): a navigation tool in protein sequence and structure space. Proteins Struct Funct Bioinf. 86(5):566–580. doi:10.1002/prot.25477.
  • Chen Y, Yi D, Jiang S, Wei D. 2016. Identification of novel thermostable taurine-pyruvate transaminase from Geobacillus thermodenitrificans for chiral amine synthesis. Appl Microbiol Biotechnol. 100(7):3101–3111. doi:10.1007/s00253-015-7129-5.
  • Coscolín C, Katzke N, García-Moyano A, Navarro-Fernández J, Almendral D, Martínez-Martínez M, Bollinger A, Bargiela R, Gertler C, Chernikova TN, et al. 2019. Bioprospecting reveals class III ω-transaminases converting bulky ketones and environmentally relevant polyamines. Appl Environ Microbiol. 85(2):e02404-18. doi:10.1128/AEM.02404-18.
  • Crismaru CG, Wybenga GG, Szymanski W, Wijma HJ, Wu B, Bartsch S, de Wildeman S, Poelarends GJ, Feringa BL, Dijkstra BW, et al. 2013. Biochemical properties and crystal structure of a β-phenylalanine aminotransferase from Variovorax paradoxus. Appl Environ Microbiol. 79(1):185–195. doi:10.1128/AEM.02525-12.
  • Cui L, Cui A, Li Q, Yang L, Liu H, Shao W, Feng Y. 2022. Molecular evolution of an aminotransferase based on substrate-enzyme binding energy analysis for efficient valienamine synthesis. ACS Catal. 12(21):13703–13714. doi:10.1021/acscatal.2c03784.
  • Ferrandi EE, Previdi A, Bassanini I, Riva S, Peng X, Monti D. 2017. Novel thermostable amine transferases from hot spring metagenomes. Appl Microbiol Biotechnol. 101(12):4963–4979. doi:10.1007/s00253-017-8228-2.
  • Ferrandi EE, Spasic J, Djokic L, Vainshtein Y, Senthamaraikannan R, Vojnovic S, Grumaz C, Monti D, Nikodinovic-Runic J. 2021. Novel transaminase and laccase from Streptomyces spp. using combined identification approaches. Catalysts. 11(8):919. doi:10.3390/catal11080919.
  • Gao S, Su Y, Zhao L, Li G, Zheng G. 2017. Characterization of a (R)-selective amine transaminase from Fusarium oxysporum. Process Biochem. 63:130–136. doi:10.1016/j.procbio.2017.08.012.
  • Ghislieri D, Turner NJ. 2014. Biocatalytic approaches to the synthesis of enantiomerically pure chiral amines. Top Catal. 57(5):284–300. doi:10.1007/s11244-013-0184-1.
  • Iwasaki A, Matsumoto K, Hasegawa J, Yasohara Y. 2012. A novel transaminase, (R)-amine:pyruvate aminotransferase, from Arthrobacter sp. KNK168 (FERM BP-5228): purification, characterization, and gene cloning. Appl Microbiol Biotechnol. 93(4):1563–1573. doi:10.1007/s00253-011-3580-0.
  • Kaulmann U, Smithies K, Smith ME, Hailes HC, Ward JM. 2007. Substrate spectrum of ω-transaminase from Chromobacterium violaceum DSM30191 and its potential for biocatalysis. Enzyme Microb Technol. 41(5):628–637. doi:10.1016/j.enzmictec.2007.05.011.
  • Kelly SA, Magill DJ, Megaw J, Skvortsov T, Allers T, McGrath JW, Allen CCR, Moody TS, Gilmore BF. 2019. Characterisation of a solvent-tolerant haloarchaeal (R)-selective transaminase isolated from a Triassic period salt mine. Appl Microbiol Biotechnol. 103(14):5727–5737. doi:10.1007/s00253-019-09806-y.
  • Le Y, Wang H. 2014. High-level soluble expression of a thermostable xylanase from thermophilic fungus Thermomyces lanuginosus in Escherichia coli via fusion with OsmY protein. Protein Expr Purif. 99:1–5. doi:10.1016/j.pep.2014.03.004.
  • Leipold L, Dobrijevic D, Jeffries JW, Bawn M, Moody TS, Ward JM, Hailes HC. 2019. The identification and use of robust transaminases from a domestic drain metagenome. Green Chem. 21(1):75–86. doi:10.1039/c8gc02986e.
  • Liu Q, Xie X, Tang M, Tao W, Shi T, Zhang Y, Huang T, Zhao Y, Deng Z, Lin S. 2021. One-pot asymmetric synthesis of an aminodiol intermediate of florfenicol using engineered transketolase and transaminase. ACS Catal. 11(12):7477–7488. doi:10.1021/acscatal.1c01229.
  • Lu M, Dukunde A, Daniel R. 2019. Biochemical profiles of two thermostable and organic solvent–tolerant esterases derived from a compost metagenome. Appl Microbiol Biotechnol. 103(8):3421–3437. doi:10.1007/s00253-019-09695-1.
  • Márquez SL, Atalah J, Blamey JM. 2019. Characterization of a novel thermostable (S)-amine-transaminase from an Antarctic moderately-thermophilic bacterium Albidovulum sp. SLM16. Enzyme Microb Technol. 131:109423. doi:10.1016/j.enzmictec.2019.109423.
  • Mathew S, Deepankumar K, Shin G, Hong EY, Kim BG, Chung T, Yun H. 2016. Identification of novel thermostable ω-transaminase and its application for enzymatic synthesis of chiral amines at high temperature. RSC Adv. 6(73):69257–69260. doi:10.1039/C6RA15110H.
  • Mathew S, Nadarajan SP, Chung T, Park HH, Yun H. 2016. Biochemical characterization of thermostable ω-transaminase from Sphaerobacter thermophilus and its application for producing aromatic β-and γ-amino acids. Enzyme Microb Technol. 87-88:52–60. doi:10.1016/j.enzmictec.2016.02.013.
  • Ngo H-P-T, Nguyen DQ, Park H, Park YS, Kwak K, Kim T, Lee JH, Cho KS, Kang L-W. 2022. Conformational change of organic cofactor PLP is essential for catalysis in PLP-dependent enzymes. BMB Rep. 55(9):439–446. doi:10.5483/BMBRep.2022.55.9.090.
  • Nugent TC, El‐Shazly M. 2010. Chiral amine synthesis–recent developments and trends for enamide reduction, reductive amination, and imine reduction. Adv Synth Catal. 352(5):753–819. doi:10.1002/adsc.200900719.
  • Park ES, Shin JS. 2011. Free energy analysis of ω-transaminase reactions to dissect how the enzyme controls the substrate selectivity. Enzyme Microb Technol. 49(4):380–387. doi:10.1016/j.enzmictec.2011.06.019.
  • Park ES, Shin JS. 2013. ω-Transaminase from Ochrobactrum anthropi is devoid of substrate and product inhibitions. Appl Environ Microbiol. 79(13):4141–4144. doi:10.1128/AEM.03811-12.
  • Schätzle S, Höhne M, Redestad E, Robins K, Bornscheuer UT. 2009. Rapid and sensitive kinetic assay for characterization of ω-transaminases. Anal Chem. 81(19):8244–8248. doi:10.1021/ac901640q.
  • Schoch CL, Ciufo S, Domrachev M, Hotton CL, Kannan S, Khovanskaya R, Leipe D, Mcveigh R, O’Neill K, Robbertse B, et al. 2020. NCBI Taxonomy: a comprehensive update on curation, resources and tools. Database (Oxford). 2020:baaa062. doi:10.1093/database/baaa062.
  • Schrittwieser JH, Velikogne S, Kroutil W. 2015. Biocatalytic imine reduction and reductive amination of ketones. Adv Synth Catal. 357(8):1655–1685. doi:10.1002/adsc.201500213.
  • Shin JS, Yun H, Jang JW, Park I, Kim BG. 2003. Purification, characterization, and molecular cloning of a novel amine:pyruvate transaminase from Vibrio fluvialis JS17. Appl Microbiol Biotechnol. 61(5–6):463–471. doi:10.1007/s00253-003-1250-6.
  • Slabu I, Galman JL, Lloyd RC, Turner NJ. 2017. Discovery, engineering, and synthetic application of transaminase biocatalysts. ACS Catal. 7(12):8263–8284. doi:10.1021/acscatal.7b02686.
  • Tang K, Dong J, Zheng Z, Zhang T, Pan H, Jia H, Li Y, Wei P. 2023. The rapid high-throughput screening of ω-transaminases via a colorimetric method using aliphatic α-diketones as amino acceptors. Anal Bioanal Chem. 415(9):1733–1740. doi:10.1007/s00216-023-04573-2.
  • Wang C, Tang K, Dai Y, Jia H, Li Y, Gao Z, Wu B. 2021. Identification, characterization, and site-specific mutagenesis of a thermostable ω-transaminase from Chloroflexi bacterium. ACS Omega. 6(26):17058–17070. doi:10.1021/acsomega.1c02164.
  • Wang H, Tao Y, Masuku MV, Cao J, Yang J, Huang K, Ge Y, Yu Y, Xiao Z, Kuang Y, et al. 2023. Effects of deep eutectic solvents on the biotransformation efficiency of ω-transaminase. J Mol Liq. 377:121379. doi:10.1016/j.molliq.2023.121379.
  • Yang L, Zhang K, Xu M, Xie Y, Meng X, Wang H, Wei D. 2022. Mechanism‐guided computational design of ω‐transaminase by reprograming of high‐energy‐barrier steps. Angew Chem Int Ed Engl. 61(52):e202212555. doi:10.1002/anie.202212555.
  • Yin Q, Shi Y, Wang J, Zhang X. 2020. Direct catalytic asymmetric synthesis of α-chiral primary amines. Chem Soc Rev. 49(17):6141–6153. doi:10.1039/c9cs00921c.
  • Zhao Y, Liu S, Jiang B, Feng Y, Zhu T, Tao H, Tang X, Liu S. 2018. Genome-centered metagenomics analysis reveals the symbiotic organisms possessing ability to cross-feed with anammox bacteria in anammox consortia. Environ Sci Technol. 52(19):11285–11296. doi:10.1021/acs.est.8b02599.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.