75
Views
2
CrossRef citations to date
0
Altmetric
Research Articles

Immobilization of fungal α-galactosidase on magnetic nanoparticles and hydrolysis of raffinose family oligosaccharides (RFO) in soymilk

, &
Pages 388-400 | Received 24 Apr 2023, Accepted 08 Aug 2023, Published online: 24 Aug 2023

References

  • Anisha GS, Prema P. 2008. Reduction of non-digestible oligosaccharides in horse gram and green gram flours using crude α-galactosidase from Streptomyces griseoloalbus. Food Chem. 106(3):1175–1179. doi: 10.1016/j.foodchem.2007.07.058.
  • Bangoria P, Patel A, Shah AR. 2023. Characterization of a fungal α-galactosidase and its synergistic effect with β-mannanase for hydrolysis of galactomannan. Carbohydr. Res. 531:108893 10.1016/j.carres.2023.108893.
  • Bangoria P, Divecha J, Shah AR. 2021. Production of mannooligosaccharides producing β-Mannanase by newly isolated Penicillium aculeatum APS1 using oil seed residues under solid state fermentation. Biocatal Agric Biotechnol. 34:102023. doi: 10.1016/j.bcab.2021.102023.
  • Bangoria P, Patel A, Shah AR. 2023. Thermotolerant and protease-resistant GH5 family β-mannanase with CBM1 from Penicillium aculeatum APS1: purification and characterization. 3 Biotech. 13(3):13205. doi: 10.1007/s13205-023-03529-8.
  • Bhatia S, Singh A, Batra N, Singh J. 2020. Microbial production and biotechnological applications of α-galactosidase. Int J Biol Macromol. 150:1294–1313. doi: 10.1016/j.ijbiomac.2019.10.140.
  • Çelem EB, Önal S. 2022. Removal of raffinose family oligosaccharides from soymilk by α-galactosidase immobilized on sepabeads EC-EA and sepabeads EC-HA. ACS Food Sci Technol. 2(8):1266–1275. doi: 10.1021/acsfoodscitech.2c00115.
  • Chaki SH, Malek TJ, Chaudhary MD, Tailor JP, Deshpande MP. 2015. Magnetite Fe3O4 nanoparticles synthesis by wet chemical reduction and their characterization. Adv Nat Sci. 6(3):035009. doi: 10.1088/2043-6262/6/3/035009.
  • Dhananjay SK, Mulimani VH. 2009. Three-phase partitioning of α-galactosidase from fermented media of Aspergillus oryzae and comparison with conventional purification techniques. J Ind Microbiol Biotechnol. 36(1):123–128. doi: 10.1007/s10295-008-0479-6.
  • Dhiman S, Srivastava B, Singh G, Khatri M, Arya SK. 2020. Immobilization of mannanase on sodium alginate-grafted-β-cyclodextrin: an easy and cost effective approach for the improvement of enzyme properties. Int J Biol Macromol. 156:1347–1358. doi: 10.1016/j.ijbiomac.2019.11.175.
  • Erickson DR. 2015. Practical handbook of soybean processing and utilization. AOCS Press, Urbana, IL: Elsevier.
  • Giri SK, Mangaraj S. 2012. Processing influences on composition and quality attributes of soymilk and its powder. Food Eng Rev. 4(3):149–164. doi: 10.1007/s12393-012-9053-0.
  • Hernaiz MJ, Crout DH. 2000. Immobilization/stabilization on Eupergit C of the β-galactosidase from B. circulans and an α-galactosidase from Aspergillus oryzae. Enzyme Microb Technol. 27(1-2):26–32. doi: 10.1016/S0141-0229(00)00150-2.
  • Joseph JE, Mary PR, Haritha KV, Panwar D, Kapoor M. 2021. Soluble and cross-linked aggregated forms of α-galactosidase from Vigna mungo immobilized on magnetic nanocomposites: improved stability and reusability. Appl Biochem Biotechnol. 193(1):238–256. doi: 10.1007/s12010-020-03408-5.
  • Katrolia P, Rajashekhara E, Yan Q, Jiang Z. 2014. Biotechnological potential of microbial α-galactosidases. Crit Rev Biotechnol. 34(4):307–317. doi: 10.3109/07388551.2013.794124.
  • Kim K, Do Kim SS, Choa Y-H, Kim HT. 2007. Formation and surface modification of Fe3O4 nanoparticles by co-precipitation and sol-gel method. J. Ind. Eng. Chem. 13(7):1137–1141.
  • Lei Z, Pang X, Li N, Lin L, Li Y. 2009. A novel two-step modifying process for preparation of chitosan-coated Fe3O4/SiO2 microspheres. J Mater Process Technol. 209(7):3218–3225. doi: 10.1016/j.jmatprotec.2008.07.044.
  • Lowry O, Rosebrough N, Farr AL, Randall R. 1951. Protein measurement with the folin phenol reagent. J. Biol. Chem. 193(1):265–275. doi: 10.1016/S0021-9258(19)52451-6.
  • Medic J, Atkinson C, Hurburgh CR. 2014. Current knowledge in soybean composition. J Am Oil Chem Soc. 91(3):363–384. doi: 10.1007/s11746-013-2407-9.
  • Mohamad NR, Marzuki NHC, Buang NA, Huyop F, Wahab RA. 2015. An overview of technologies for immobilization of enzymes and surface analysis techniques for immobilized enzymes. Biotechnol Biotechnol Equip. 29(2):205–220. doi: 10.1080/13102818.2015.1008192.
  • Naganagouda K, Mulimani VH. 2006. Gelatin blends with alginate: gel fibers for α-galactosidase immobilization and its application in reduction of non-digestible oligosaccharides in soymilk. Process Biochem. 41(8):1903–1907. doi: 10.1016/j.procbio.2006.03.040.
  • Okutucu B, Çelem EB, Önal S. 2010. Immobilization of α-galactosidase on galactose-containing polymeric beads. Enzyme Microb Technol. 46(3-4):200–205. doi: 10.1016/j.enzmictec.2009.12.005.
  • Prashanth SJ, Mulimani VH. 2005. Soymilk oligosaccharide hydrolysis by Aspergillus oryzae α-galactosidase immobilized in calcium alginate. Process Biochem. 40(3-4):1199–1205. doi: 10.1016/j.procbio.2004.04.011.
  • Sethi S, Tyagi SK, Anurag RK. 2016. Plant-based milk alternatives an emerging segment of functional beverages: a review. J Food Sci Technol. 53(9):3408–3423. doi: 10.1007/s13197-016-2328-3.
  • Singh N, Kayastha AM. 2012. Cicer α-galactosidase immobilization onto chitosan and Amberlite MB-150: optimization, characterization, and its applications. Carbohydr Res. 358:61–66. doi: 10.1016/j.carres.2012.06.013.
  • Singh N, Srivastava G, Talat M, Raghubanshi H, Srivastava ON, Kayastha AM. 2014. Cicer α-galactosidase immobilization onto functionalized graphene nanosheets using response surface method and its applications. Food Chem. 142:430–438. doi: 10.1016/j.foodchem.2013.07.079.
  • Szymańska E, Winnicka K. 2015. Stability of chitosan—A challenge for pharmaceutical and biomedical applications. Mar Drugs. 13(4):1819–1846. doi: 10.3390/md13041819.
  • Tanaka M, Thananunkul D, Lee T-C, Chichester CO. 1975. A simplified method for the quantitative determination of sucrose, raffinose and stachyose in legume seeds. J Food Science. 40(5):1087–1088. doi: 10.1111/j.1365-2621.1975.tb02274.x.
  • Trivedi S, Divecha J, Shah T, Shah A. 2015. Rapid and efficient bioconversion of chicory inulin to fructose by immobilized thermostable inulinase from Aspergillus tubingensis CR16. Bioresour Bioprocess. 2(1):32. doi: 10.1186/s40643-015-0060-x.
  • Vaghari H, Jafarizadeh-Malmiri H, Mohammadlou M, Berenjian A, Anarjan N, Jafari N, Nasiri S. 2016. Application of magnetic nanoparticles in smart enzyme immobilization. Biotechnol Lett. 38(2):223–233. doi: 10.1007/s10529-015-1977-z.
  • Wang D, Jiang W. 2019. Preparation of chitosan-based nanoparticles for enzyme immobilization. Int J Biol Macromol. 126:1125–1132. doi: 10.1016/j.ijbiomac.2018.12.243.
  • Wang J, Zhao G, Li Y, Liu X, Hou P. 2013. Reversible immobilization of glucoamylase onto magnetic chitosan nanocarriers. Appl Microbiol Biotechnol. 97(2):681–692. doi: 10.1007/s00253-012-3979-2.
  • Xu J, Sun J, Wang Y, Sheng J, Wang F, Sun M. 2014. Application of iron magnetic nanoparticles in protein immobilization. Molecules. 19(8):11465–11486. doi: 10.3390/molecules190811465.
  • Zang L, Qiu J, Wu X, Zhang W, Sakai E, Wei Y. 2014. Preparation of magnetic chitosan nanoparticles as support for cellulase immobilization. Ind Eng Chem Res. 53(9):3448–3454. doi: 10.1021/ie404072s.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.