73
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Hexavalent chromium detoxification by haloalkaliphilic Nesterenkonia sp strain NRC-Y immobilized in different matrices

, ORCID Icon, , & ORCID Icon
Pages 401-415 | Received 17 May 2023, Accepted 08 Aug 2023, Published online: 23 Aug 2023

References

  • Abo-Alkasem MI, Maany DA, El-Abd MA, Ibrahim ASS. 2023. Hexavalent chromium reduction by a potent novel haloalkaliphilic strain Nesterenkonia sp strain NRC-Y isolated from hypersaline soda lakes. Egypt J Chem. 66(6):463–473. doi:10.21608/ejchem.2022.
  • Barrera MC, Jakobs-Schoenwandt D, Gómez MI, Serrato J, Ruppel S, Patel AV. 2020. Formulating bacterial endophyte: pre-conditioning of cells and the encapsulation in amidated pectin beads. Biotechnol Rep. 26:e00463. doi:10.1016/j.btre.2020.e00463.
  • Bartlett RJ, James BR. 1996. Chromium. In: DL Sparks (ed). Methods of soil analysis. Part 3 chemical methods. Madison: SSA.
  • Bepeyeva A, de Barros JMS, Albadran H, Kakimov AK, Kakimova ZK, Charalampopoulos D, Khutoryanskiy VV. 2017. Encapsulation of Lactobacillus casei into calcium pectinate chitosan beads for enteric delivery. J Food Sci. 82(12):2954–2959. doi:10.1111/1750-3841.13974.
  • Chai L, Ding C, Li J, Yang Z, Shi Y. 2019. Multi-omics response of Pannonibacter phragmitetus BB to hexavalent chromium. Environ Pollut. 249:63–73. doi:10.1016/j.envpol.2019.03.005.
  • Chen J, Tian Y. 2021. Hexavalent chromium reducing bacteria: mechanism of reduction and characteristics. Environ Sci Pollut Res Int. 28(17):20981–20997. doi:10.1007/s11356-021-13325-7.
  • Chen R, Wang P, Li M, Tian F, Xiao J, Fu X, Ding C, Shi Y. 2018. Removal of Cr(VI) by magnetic Fe/C crosslinked nanoparticle for water purification: rapid contaminant removal property and mechanism of action. Water Sci Technol. 78(10):2171–2182. doi:10.2166/wst.2018.497.
  • Das S, Behera BC, Mohapatra RK, Pradhan B, Sudarshan M, Chakraborty A, Thatoi H. 2021. Reduction of hexavalent chromium by Exiguobacterium mexicanum isolated from chromite mines soil. Chemosphere. 282:131135. doi:10.1016/j.chemosphere.2021.131135.
  • Dey S, Paul AK. 2014. Reduction of hexavalent chromium by immobilized viable cells of Arthrobacter sp. SUK 1201. Bioremed J. 18(1):1–11. doi:10.1080/10889868.2013.834866.
  • Dey S, Paul AK. 2015. Hexavalent chromate reduction during growth and by immobilized cells of Arthrobacter sp. SUK 1205. Sci Technol Develop. 34(3):158–168. doi:10.3923/std.2015.158.168.
  • Dey S, Paul AK. 2020. Immobilized chromate reducing bacteria and their enzymes in bioremediation of hexavalent chromium. JAM. 4(2):106–121.
  • Esmaeili A, Farrahi NT. 2016. The efficiency of a novel bioreactor employing bacteria and chitosan-coated magnetic nanoparticles. J Taiwan Institute Chemical Engineers. 59:113–119. doi:10.1016/j.jtice.2015.08.022.
  • Huynh UTD, Assifaoui A, Chambin O. 2017. Pellets based on polyuronates: relationship between gelation and release properties. J Food Eng.199:27–35. 199:27–35. doi:10.1016/j.jfoodeng.2016.12.004.
  • Ibrahim AS, El-Tayeb MA, Elbadawi YB, Al-Salamah AA, Antranikian G. 2012. Hexavalent chromate reduction by alkaliphilic Amphibacillus sp KSUCr3 is mediated by cupper dependent membraneassociated Cr(VI) reductase. Extremophiles. 16(4):659–668. doi:10.1007/s00792-012-0464-x.
  • Ishak AF, Karim NA, Wan Azlina Ahmad WA, Zakaria ZA. 2016. Chromate detoxification using combination of ChromeBac™ system and immobilized chromate reductase beads. Intern Biodeter Biodegrad. 113:238–243. doi:10.1016/j.ibiod.2016.03.020.
  • Jobby R, Jha P, Yadav AK, Desai N. 2018. Biosorption and biotransformation of hexavalent chromium [Cr(VI)]: a comprehensive review. Chemosphere. 207:255–266. doi:10.1016/j.chemosphere.2018.05.050.
  • Karthik C, Barathi S, Pugazhendhi A, Ramkumar VS, Thi ND, Arulselvi PI. 2017. Evaluation of Cr(VI) reduction mechanism and removal by Cellulosimicrobium funkei strain AR8, a novel haloalkaliphilic bacterium. J Hazard Mater. 333(5):42–53. doi:https://doi.org/10.1016/j.jhazmat.2017.03.037.
  • Kathiravan MN, Rani RK, Karthick M, Muthukumar K. 2010. Mass transfer studies on the reduction of Cr(VI) using calcium alginate immobilized Bacillus sp. in packed bed reactor. Bioresour Technol. 101(3):853–858. doi:10.1016/j.biortech.2009.08.088.
  • Lin X, Luo M, Jiang C, Wei X, Kong P, Liang X, Zhao J, Yang L, Liu H. 2012. In vitro reduction of hexavalent chromium by cytoplasmic fractions of Pannonibacter phragmitetus LSSE-09 under aerobic and anaerobic conditions. Appl Biochem Biotechnol. 166(4):933–941. doi:10.1007/s12010-011-9481-y.
  • Lu YZ, Chen GJ, Bai YN, Fu L, Qin LP, Zeng RJ. 2018. Chromium isotope fractionation during Cr(VI) reduction in a methane-based hollow-fiber membrane biofilm reactor. Water Res. 130:263–270. doi:10.1016/j.watres.2017.11.045.
  • Lyu H, Tang J, Yao H, Gai L, Zeng EY, Liber K, Gong Y. 2017. Removal of hexavalent chromium from aqueous solutions by a novel biochar supported nanoscale iron sulfde composite. Chem Eng J. 322:516–524. doi:10.1016/j.cej.2017.04.058.
  • Mala JG, Sujatha D, Rose C. 2015. Inducible chromate reductase exhibiting extracellular activity in Bacillus methylotrophicus for chromium bioremediation. Microbiol Res. 170:235–241. doi:10.1016/j.micres.2014.06.001.
  • Mohamed SA, Khan AA, Al-Bar AM, El-Shishtawy RM. 2014. Immobilization of Trichoderma harzianum α-amylase on treated wool: optimization and Characterization. Molecules. 19(6):8027–8038. doi:10.3390/molecules19068027.
  • Monteiro RRC, dos Santos JCS, Alcántara AR, Fernandez-Lafuente R. 2020. Enzyme-coated micro crystals: an almost forgotten but very simple and elegant immobilization strategy. Catalysts. 10(8):891. doi:10.3390/catal1008089.
  • Neto FS, Neta MM, Sales MB, Silva de Oliveira FA, de Castro Bizerra V, Sanders Lopes AA, de Sousa Rios MA, Santos J. 2023. Research progress and trends on utilization of lignocellulosic residues as supports for enzyme immobilization via advanced bibliometric analysis. Polymers. 15(9):2057. doi:10.3390/polym15092057.
  • Pal A, Sudeshna Datta S, Paul AK. 2013. Hexavalent chromium reduction by immobilized cells of Bacillus sphaericus and 303. Braz Arch Biol Technol. 56(3):505–512. doi:10.1590/S1516-89132013000300019.
  • Pradhan D, Sukla LB, Sawyer M, Rahman PM. 2017. Recent bioreduction of hexavalent chromium in wastewater treatment: a review. J Ind Eng Chem. 55:1–20. doi:10.1016/j.jiec.2017.06.040.
  • Silva ARM, Alexandre JH, Souza JES, Neto JGL, de Sousa Júnior PG, Rocha MVP, dos Santos JCS. 2022. The chemistry and applications of metal–organic frameworks (mofs) as industrial enzyme immobilization systems. Molecules. 27(14):4529. doi:10.3390/molecules27144529.
  • Singla P, Bhardwaj RD. 2020. Enzyme promiscuity – a light on the “darker” side of enzyme specificity. Biocatal Biotransform. 38(2):81–92. doi:10.1080/10242422.2019.1696779.
  • Sriamornsak P. 2011. Application of pectin in oral drug delivery. Expert Opin Drug Deliv. 8(8):1009–1023. doi:10.1517/17425247.2011.584867.
  • Tan H, Wang C, Zeng G, Luo Y, Li H, Heng Xu H. 2020. Bioreduction and biosorption of Cr6+ by a novel Bacillus sp. CRB-B1 strain. J Hazard Mater. 386:121628. doi:10.1016/j.jhazmat.2019.121628.
  • Tripathi M, Garg SK (2013) Co-remediation of pentachlorophenol and Cr6+ by free and immobilized cells of native Bacillus cereus isolate: spectrometric characterization of PCP dechlorination products, bioreactor trial and chromate reductase activity. Process Biochem 48(3): 496–509. doi:10.1016/j.procbio.2013.02.009.
  • Virgen-Ortiz JJ, dos Santos JS, Ortiz C, Berenguer-Murcia A, Barbosa O, Rodrigues RC, Fernandez-Lafuente RF. 2019. Lecitase ultra: a phospholipase with great potential in biocatalysis. Molecular Catalysis. 473:110405. doi:10.1016/j.mcat.2019.110405.
  • Wahba MI. 2020. Mechanically stable egg white protein based immobilization carrier for β-D-galactosidase: thermodynamics and application in whey lactose hydrolysis. React Funct Poly. 155:104696. doi:10.1016/j.reactfunctpolym.2020.104696.
  • Wahba MI. 2021. Carrageenan stabilized calcium pectinate beads and their utilization as immobilization matrices. Biocatal Agricul Biotech. 35:102078. doi:10.1016/j.bcab.2021.102078.
  • Wahba MI. 2022. Soy protein isolate for enzymes bio-conjugation. Biocatal Agricul Biotechnol. 43:102390. doi:10.1016/j.bcab.2022.102390.
  • Wang G, Tsai T, Chiu C, Cheng C, Chung Y. 2020. Operational characteristics of immobilized Ochrobactrum sp. CUST210-1 biosystem and Immobilized chromate reductase biosystem in continuously treating actual chromium-containing wastewater. Appl Sci. 10(17):5934. doi:10.3390/app10175934.
  • Woodward J. 1988. Methods of immobilization of microbial cells. J Microb Methods. 8(1-2):91–102. doi:10.1016/0167-7012(88)90041-3.
  • Wu M, Li Y, Li J, Wang Y, Xu H, Zhao Y. 2019. Bioreduction of hexavalent chromium using a novel strain CRB-7 immobilized on multiple materials. J Hazard Mater. 368:412–420. doi:10.1016/j.jhazmat.2019.01.059.
  • Zeng Q, Hu Y, Yang Y, Hu L, Zhong H, He Z. 2019. Cell envelop is the key site for Cr(VI) reduction by Oceanobacillus oncorhynchi W4, a newly isolated Cr(VI) reducing bacterium. J Hazard Mater. 368:149–155. doi:10.1016/j.jhazmat.2019.01.031.
  • Zhou Z, Li G, Li Y. 2010. Immobilization of Saccharomyces cerevisiae alcohol dehydrogenase on hybrid alginate–chitosan beads. Intern J Biolog Macromol. 47(1):21–26. doi:10.1016/j.ijbiomac.2010.04.001.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.