51
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Enhancing lipases reactivity in benzylic acetates hydrolysis: impact of kosmotropic salts under non-conventional conditions

, &
Pages 416-425 | Received 10 Jul 2023, Accepted 04 Sep 2023, Published online: 13 Sep 2023

References

  • Adamczak M, Krishna SH. 2004. Strategies for improving enzymes for efficient biocatalysis. Food Technology and Biotechnology. 42(4):251–264.
  • Alalla A, Merabet-Khelassi M, Riant O, Aribi-Zouioueche L. 2016. Easy kinetic resolution of some β-amino alcohols by Candida antarctica lipase B catalyzed hydrolysis in organic media. Tetrahedron: asymmetry. 27(24):1253–1259. doi: 10.1016/j.tetasy.2016.10.003.
  • Aribi-Zouioueche L, Fiaud J-C. 2000. Kinetic resolution of 1-acenaphthenol and 1-acetoxynaphthene through lipase-catalyzed acylation and hydrolysis. Tetrahedron Letters. 41(21):4085–4088. doi: 10.1016/S0040-4039(00)00544-X.
  • Arroyo M, de la Mata I, García J-L, Barredo J-L. 2017. Biocatalysis for industrial production of active pharmaceutical ingredients (APIs). In: Brahmachari G, editor. Biotechnology Microbial Enzymes. Chap. 17, p. 451–473. Copyright © 2017 Elsevier Inc.
  • Belkacemi FZ, Merabet-Khelassi M, Aribi-Zouioueche L, Riant O. 2017. Diastereoselective and enantioselective alkaline-hydrolysis of 2-aryl-1-cyclohexyl acetate: a CAL-B catalyzed deacylation/acylation tandem process. Tetrahedron: asymmetry. 28(11):1644–1650. doi: 10.1016/j.tetasy.2017.09.010.
  • Benamara NE, Merabet‐Khelassi M, Lakoud SG, Aribi‐Zouioueche L, Riant O. 2021. Enantioselective enzymatic synthesis of (R)‐phenyl alkyl esters and their analogue amides using fatty acids as green acyl donors. ChemistrySelect. 6(48):13941–13946. doi: 10.1002/slct.202103831.
  • Braia N, Merabet‐Khelassi M, Aribi‐Zouioueche L. 2018. Efficient access to both enantiomers of 3‐(1‐hydroxyethyl) phenol by regioselective and enantioselective CAL‐B–catalyzed hydrolysis of diacetate in organic media by sodium carbonate. Chirality. 30(12):1312–1320. doi: 10.1002/chir.23025.
  • Chen CS, Fujimoto Y, Girdaukas G, Sih CJ. 1982. Quantitative analyses of biochemical kinetic resolutions of enantiomers. J Am Chem Soc. 104(25):7294–7299. doi: 10.1021/ja00389a064.
  • Chênevert R, Gravil S, Bolte J. 2005. Enzymatic resolution of 1, 1-dimethoxybut-3-en-2-ol and 1, 1-dimethoxypent-4-en-2-ol, α-hydroxyaldehyde precursors for aldol-type reactions. Tetrahedron: asymmetry. 16(12):2081–2086. doi: 10.1016/j.tetasy.2005.05.013.
  • Ferrah M, Benamara N, Merabet-Khelassi M, Lakoud SG, Aribi-Zouioueche L. 2023. Enantioselective bio-deacylation of arylalkyl acetates using tertiary amines as additive under promiscuous conditions. Enzyme Microb Technol. 162:110145. doi: 10.1016/j.enzmictec.2022.110145.
  • Ferreira EA, Rodezno SV, Omori ÁT, Cunha RL. 2019. A study on the enzyme catalysed enantioselective hydrolysis of methyl 2-methyl-4-oxopentanoate, a precursor of chiral γ-butyrolactones. Biocatalysis Biotransformation. 37(2):115–123. doi: 10.1080/10242422.2018.1502274.
  • Houiene Z, Merabet-Khelassi M, Bouzemi N, Riant O, Aribi-Zouioueche L. 2013. A green route to enantioenriched (S)-arylalkyl carbinols by deracemization via combined lipase alkaline-hydrolysis/Mitsunobu esterification. Tetrahedron: asymmetry. 24(5-6):290–296. doi: 10.1016/j.tetasy.2013.01.020.
  • Iyer PV, Ananthanarayan L. 2008. Enzyme stability and stabilization—aqueous and non-aqueous environment. Process Biochemistry. 43(10):1019–1032. doi: 10.1016/j.procbio.2008.06.004.
  • Janssen AE, Vaidya AM, Halling PJ. 1996. Substrate specificity and kinetics of Candida rugosa lipase in organic media. Enzyme Microb Technol. 18(5):340–346. doi: 10.1016/0141-0229(95)00075-5.
  • Kagan HB, Fiaud JC. 1988. Topics in Stereochemistry. Wiley: New York 18: p. 249.
  • Kang B, Tang H, Zhao Z, Song S. 2020. Hofmeister series: insights of ion specificity from amphiphilic assembly and interface property. ACS Omega. 5(12):6229–6239. doi: 10.1021/acsomega.0c00237.
  • Kazlauskas RJ, Weissfloch ANE, Rappaport AT, Cuccia LA. 1991. A rule to predict which enantiomer of a secondary alcohol reacts faster in reactions catalyzed by cholesterol esterase, lipase from Pseudomonas cepacia, and lipase from Candida rugosa. J Org Chem. 56(8):2656–2665. doi: 10.1021/jo00008a016.
  • Kumar A, Dhar K, Singh Kanwar S, Kumar Arora P. 2016. Lipase catalysis in organic solvents: advantages and applications. Biol Proced Online. 18(1):2. doi: 10.1186/s12575-016-0033-2.
  • Leśniarek A, Chojnacka A, Gładkowski W. 2018. Application of Lecitase® Ultra-catalyzed hydrolysis to the kinetic resolution of (E)-4-phenylbut-3-en-2-yl esters. Catalysts. 8(10):423. doi: 10.3390/catal8100423.
  • Liang Y-R, Wu Q, Lin X-F. 2017. Effect of additives on the selectivity and reactivity of enzymes. Chem Rec. 17(1):90–121. doi: 10.1002/tcr.201600016.
  • Lima VMG, Krieger N, Mitchell DA, Fontana JD. 2004. Activity and stability of a crude lipase from Penicillium aurantiogriseum in aqueous media and organic solvents. Biochem Engi J. 18(1):65–71. doi: 10.1016/S1369-703X(03)00165-7.
  • Melais N, Aribi-Zouioueche L, Riant O. 2016. The effect of the migrating group structure on enantioselectivity in lipase-catalyzed kinetic resolution of 1-phenylethanol. Comptes Rendus Chimie. 19(8):971–977. doi: 10.1016/j.crci.2016.05.002.
  • Merabet-Khelassi M, Bouzemi N, Fiaud J-C, Riant O, Aribi-Zouioueche L. 2011. Effect of the amount of lipase on enantioselectivity in the kinetic resolution by enzymatic acylation of arylalkylcarbinols. Comptes Rendus. Chimie. 14(11):978–986. doi: 10.1016/j.crci.2011.07.005.
  • Merabet-Khelassi M, Houiene Z, Aribi-Zouioueche L, Riant O. 2012. Green methodology for enzymatic hydrolysis of acetates in non-aqueous media via carbonate salts. Tetrahedron: asymmetry. 23(11-12):828–833. doi: 10.1016/j.tetasy.2012.06.001.
  • Merabet-Khelassi M, Zaidi A, Aribi-Zouioueche L. 2017. CAL-B-Catalyzed deacylation of benzylic acetates: effect of amines addition. Comparison of several approaches. Enzyme Microb Technol. 107:1–6. doi: 10.1016/j.enzmictec.2017.07.005.
  • Naemura K, Murata M, Tanaka R, Yano M, Hirose K, Tobe Y. 1996. Enantioselective acylation of alcohols catalyzed by lipase QL from Alcaligenes sp.: a predictive active site model for lipase QL to identify the faster reacting enantiomer of an alcohol in this acylation. Tetrahedron: asymmetry. 7(6):1581–1584. doi: 10.1016/0957-4166(96)00186-3.
  • Okamoto T, Ueji S. 2000. A new method for improving the enantioselectivity of lipase-catalyzed hydrolysis in organic solvent containing a small amount of water in the presence of metal ions. Biotechnology Letters. 22(14):1169–1171. doi: 10.1023/A:1005637329704.
  • Pabsch D, Figiel P, Sadowski G, Held C. 2022. Solubility of electrolytes in organic solvents: solvent-specific effects and ion-specific effects. J Chem Eng Data. 67(9):2706–2718. doi: 10.1021/acs.jced.2c00203.
  • Pan S, Liu X, Xie Y, Yi Y, Li C, Yan Y, Liu Y. 2010. Esterification activity and conformation studies of Burkholderia cepacia lipase in conventional organic solvents, ionic liquids and their co-solvent mixture media. Bioresour Technol. 101(24):9822–9824. doi: 10.1016/j.biortech.2010.07.107.
  • Park J-Y, Park K-M. 2022. Lipase and its unique selectivity: a mini-review. Journal of Chemistry. 2022:1–11. doi: 10.1155/2022/7609019.
  • Patel RN. 2018. Biocatalysis for synthesis of pharmaceuticals. Bioorg Med Chem. 26(7):1252–1274. doi: 10.1016/j.bmc.2017.05.023.
  • Pleiss J, Fischer M, Schmid RD. 1998. Anatomy of lipase binding sites: the scissile fatty acid binding site. Chem Phys Lipids. 93(1-2):67–80. doi: 10.1016/s0009-3084(98)00030-9.
  • Rakels JLL, Straathof AJJ, Heijneii JJ. 1994. Improvement of enantioselective enzymatic ester hydrolysis in organic solvents. Tetrahedron: asymmetry. 5(1):93–100. doi: 10.1016/S0957-4166(00)80488-7.
  • Razi S, Zeror S, Merabet-Khelassi M, Kolodziej E, Toffano M, Aribi-Zouioueche L. 2021. Two approaches for cal-b-catalyzed enantioselective deacylation of a set of α-phenyl ethyl esters: organic solvent with sodium carbonate and micro-aqueous medium. Catal Lett. 151(9):2603–2611. doi: 10.1007/s10562-020-03525-0.
  • Reddy UC, Manheri MK. 2019. 1‐Hydroxymethyl‐7‐oxabicyclo [2.2. 1] hept‐2‐ene skeleton in enantiopure form through enzymatic kinetic resolution. Chirality. 31(4):336–347. doi: 10.1002/chir.23060.
  • Sánchez DA, Tonetto GM, Ferreira ML. 2018. Burkholderia cepacia lipase: a versatile catalyst in synthesis reactions. Biotechnol Bioeng. 115(1):6–24. doi: 10.1002/bit.26458.
  • Serdakowski AL, Dordick JS. 2008. Enzyme activation for organic solvents made easy. Trends Biotechnol. 26(1):48–54. doi: 10.1016/j.tibtech.2007.10.007.
  • Sheldon RA. 2016. Biocatalysis and green chemistry. In: Patel RN, editor. Green Biocatalysis. Chap 1. Wiley online library. p. 1–15.
  • Simić S, Zukić E, Schmermund L, Faber K, Winkler CK, Kroutil W. 2022. Shortening synthetic routes to small molecule active pharmaceutical ingredients employing biocatalytic methods. Chem Rev. 122(1):1052–1126. doi: 10.1021/acs.chemrev.1c00574.
  • Wang B, Zhu B, Gong J, Weng J, Xia F, Liu W. 2020. Resolution of racemic1-(4-methoxyphenyl) ethanol using immobilized lipase with high substrate tolerance. Biochemical Eng J. 158:107559. doi: 10.1016/j.bej.2020.107559.
  • Wang S, Meng X, Zhou H, Liu Y, Secundo F, Liu Y. 2016. Enzyme stability and activity in non-aqueous reaction systems: a mini review. Catalysts. 6(2):32. doi: 10.3390/catal6020032.
  • Wittrup Larsen M, Zielinska DF, Martinelle M, Hidalgo A, Jensen LJ, Bornscheuer UT, Hult K. 2010. Suppression of water as a nucleophile in Candida antarctica lipase B catalysis. Chembiochem. 11(6):796–801. doi: 10.1002/cbic.200900743.
  • Wu S, Snajdrova R, Moore JC, Baldenius K, Bornscheuer UT. 2021. Biocatalysis: enzymatic synthesis for industrial applications. Angew Chem Int Ed Engl. 60(1):88–119. doi: 10.1002/anie.202006648.
  • Xie W, Liu C, Yang L, Gao Y. 2014. On the molecular mechanism of ion specific Hofmeister series. Sci China Chem. 57(1):36–47. doi: 10.1007/s11426-013-5019-1.
  • Zaïdi A, Merabet-Khelassi M, Aribi-Zouioueche L. 2015. CAL-B-catalyzed enantioselective deacetylation of some benzylic acetate derivatives via alcoholysis in non-aqueous media. Catal Lett. 145(4):1054–1061. doi: 10.1007/s10562-014-1470-7.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.