175
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Covalent immobilization of recombinant L-asparaginase from Geobacillus kaustophilus on ReliZyme supports for mitigation of acrylamide

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 426-439 | Received 25 Apr 2023, Accepted 02 Sep 2023, Published online: 15 Sep 2023

References

  • Aiswarya R, Baskar G. 2018. Enzymatic mitigation of acrylamide in fried potato chips using asparaginase from Aspergillus terreus. Int J Food Sci Technol. 53(2):491–498. doi: 10.1111/ijfs.13608.
  • Alagöz D, Toprak A, Yildirim D, Tükel SS, Fernandez-Lafuente R. 2021. Modified silicates and carbon nanotubes for immobilization of lipase from Rhizomucor miehei: effect of support and immobilization technique on the catalytic performance of the immobilized biocatalysts. Enzyme Microb Technol. 144:109739. doi: 10.1016/j.enzmictec.2020.109739.
  • Alagöz D, Tükel SS, Yildirim D. 2016. Immobilization of pectinase on silica-based supports: impacts of particle size and spacer arm on the activity. Int J Biol Macromol. 87:426–432. doi: 10.1016/j.ijbiomac.2016.03.007.
  • Alam S, Ahmad R, Pranaw K, Mishra P, Kumar Khare S. 2018. Asparaginase conjugated magnetic nanoparticles used for reducing acrylamide formation in food model system. Bioresour Technol. 269:121–126. doi: 10.1016/j.biortech.2018.08.095.
  • Alam S, Nagpal T, Singhal R, Kumar Khare S. 2021. Immobilization of L-asparaginase on magnetic nanoparticles: kinetics and functional characterization and applications. Bioresour Technol. 339:125599. doi: 10.1016/j.biortech.2021.125599.
  • Barbosa O, Ortiz C, Berenguer-Murcia Á, Torres R, Rodrigues RC, Fernandez-Lafuente R. 2014. Glutaraldehyde in bio-catalysts design: a useful crosslinker and a versatile tool in enzyme immobilization. RSC Adv. 4(4):1583–1600. doi: 10.1039/C3RA45991H.
  • Barros RAM, Cristóvão RO, Carabineiro SAC, Neves MC, Freire MG, Faria JL, Santos-Ebinuma VC, Tavares APM, Silva CG. 2022. Immobilization and characterization of L-asparaginase over carbon xerogels. BioTech. 11(2):10. doi: 10.3390/biotech11020010/s1.
  • Bayraktar H, Serilmez M, Karkaş T, Çelem EB, Önal S. 2011. Immobilization and stabilization of α-galactosidase on Sepabeads EC-EA and EC-HA. Int J Biol Macromol. 49(4):855–860. doi: 10.1016/j.ijbiomac.2011.08.009.
  • Betancor L, López-Gallego F, Hidalgo A, Alonso-Morales N, Dellamora-Ortiz G, CesarMateo GDO, Fernández-Lafuente R, Guisán JM. 2006. Different mechanisms of protein immobilization on glutaraldehyde activated supports: effect of support activation and immobilization conditions. Enzyme Microb Technol. 39(4):877–882. doi: 10.1016/j.enzmictec.2006.01.014.
  • Bilgin R, Yalcin MS, Yildirim D. 2016. Optimization of covalent immobilization of Trichoderma reesei cellulase onto modified ReliZyme HA403 and Sepabeads EC-EP supports for cellulose hydrolysis, in buffer and ionic liquids/buffer media. Artif Cells Nanomed Biotechnol. 44(5):1276–1284. doi: 10.3109/21691401.2015.1024842.
  • Boudrant J, Woodley JM, Fernandez-Lafuente R. 2020. Parameters necessary to define an immobilized enzyme preparation. Process Biochem. 90:66–80. doi: 10.1016/j.procbio.2019.11.026.
  • Chand S, Mahajan RV, Prasad JP, Sahoo DK, Mihooliya KN, Dhar MS, Sharma G. 2020. A comprehensive review on microbial L-asparaginase: bioprocessing, characterization, and industrial applications. Biotechnol Appl Biochem. 67(4):619–647. doi: 10.1002/bab.1888.
  • Chi H, Xia B, Shen J, Zhu X, Lu Z, Lu F, Zhu P. 2022. Characterization of a novel and glutaminase-free type II L-asparaginase from Corynebacterium glutamicum and its acrylamide alleviation efficiency in potato chips. Int J Biol Macromol. 221:1384–1393. doi: 10.1016/j.ijbiomac.2022.09.162.
  • De Melo RR, Alnoch RC, Vilela AFL, De Souza EM, Krieger N, Ruller R, Sato HH, Mateo C. 2017. New heterofunctional supports based on glutaraldehyde-activation: a tool for enzyme immobilization at neutral pH. Molecules. 22(7):1088. doi: 10.3390/molecules22071088.
  • Federsel H-J, Moody TS, Taylor SJC, Puglisi A, Vitale P, Fernandez-Lafuente R. 2021. Recent trends in enzyme immobilization-concepts for expanding the biocatalysis toolbox. Molecules. 26(9):2822. doi: 10.3390/molecules26092822.
  • Friedman M. 2015. Acrylamide: inhibition of formation in processed food and mitigation of toxicity in cells, animals, and humans. Food Funct. 6(6):1752–1772. doi: 10.1039/c5fo00320b.
  • Garcia-Galan C, Berenguer-Murcia Á, Fernandez-Lafuente R, Rodrigues RC. 2011. Potential of different enzyme immobilization strategies to improve enzyme performance. Adv Synth Catal. 353(16):2885–2904. doi: 10.1002/adsc.201100534.
  • Halford NG, Muttucumaru N, Powers SJ, Gillatt PN, Hartley L, Elmore JS, Mottram DS. 2012. Concentrations of free amino acids and sugars in nine potato varieties: effects of storage and relationship with acrylamide formation. J Agric Food Chem. 60(48):12044–12055. doi: 10.1021/jf3037566.
  • Izumi Y, Fujii C, O'Dell KA, Zorumski CF. 2022. Acrylamide inhibits long-term potentiation and learning involving microglia and pro-inflammatory signaling. Sci Rep. 12(1):12429. doi: 10.1038/s41598-022-16762-7.
  • Jia R, Wan X, Geng X, Xue D, Xie Z, Chen C. 2021. microbial L-asparaginase for application in acrylamide mitigation from food: current research status and future perspectives. Microorganisms. 9(8):1659. doi: 10.3390/microorganisms9081659.
  • Koszucka A, Nowak A, Nowak I, Motyl I. 2020. Acrylamide in human diet, its metabolism, toxicity, inactivation and the associated European Union legal regulations in food industry. Crit Rev Food Sci Nutr. 60(10):1677–1692. doi: 10.1080/10408398.2019.1588222.
  • Li R, Zhang Z, Pei X, Xia X. 2020. Covalent immobilization of L-asparaginase and optimization of its enzyme reactor for reducing acrylamide formation in a heated food model system. Front Bioeng Biotechnol. 8:584758. doi: 10.3389/fbioe.2020.584758.
  • Lingnert H, Grivas S, Jägerstad M, Skog K, Törnqvist M, Åman P. 2002. Acrylamide in food: mechanisms of formation and influencing factors during heating of foods. Food Nutr Res. 46(4):159–172. doi: 10.3402/fnr.v46i4.1456.
  • Lund MN, Ray CA. 2017. Control of Maillard reactions in foods: strategies and chemical mechanisms. J Agric Food Chem. 65(23):4537–4552. doi: 10.1021/acs.jafc.7b00882.
  • Maan AA, Anjum MA, Khan MKI, Nazir A, Saeed F, Afzaal M, Aadil RM. 2022. Acrylamide formation and different mitigation strategies during food processing – a review. Food Rev Int. 38(1):70–87. doi: 10.1080/87559129.2020.1719505.
  • Mateo C, Abian O, Fernández-Lorente G, Pedroche J, Fernández-Lafuente R, Guisan JM, Tam A, Daminati M. 2002. Epoxy sepabeads: a novel epoxy support for stabilization of industrial enzymes via very intense multipoint covalent attachment. Biotechnol Prog. 18(3):629–634. doi: 10.1021/bp010171n.
  • Monajati M, Borandeh S, Hesami A, Mansouri D, Tamaddon AM. 2018. Immobilization of L-asparaginase on aspartic acid functionalized graphene oxide nanosheet: enzyme kinetics and stability studies. Chem Eng J. 354:1153–1163. doi: 10.1016/j.cej.2018.08.058.
  • Neifar S, Cervantes FV, Bouanane-Darenfed A, BenHlima H, Ballesteros AO, Plou FJ, Bejar S. 2020. Immobilization of the glucose isomerase from Caldicoprobacter algeriensis on Sepabeads EC-HA and its efficient application in continuous high fructose syrup production using packed bed reactor. Food Chem. 309:125710. doi: 10.1016/j.foodchem.2019.125710.
  • Nematollahi A, Mollakhalili Meybodi N, Mousavi Khaneghah A. 2021. An overview of the combination of emerging technologies with conventional methods to reduce acrylamide in different food products: perspectives and future challenges. Food Control. 127:108144. doi: 10.1016/j.foodcont.2021.108144.
  • Noma SAA, Ulu A, Koytepe S, Ateş B. 2020. Preparation and characterization of amino and carboxyl functionalized core-shell Fe3O4/SiO2 for L-asparaginase immobilization: a comparison study. Biocatal Biotransform. 38(5):392–404. doi: 10.1080/10242422.2020.1767605.
  • Özdemir Fİ, Didem Orhan M, Atasavum ZT, Tülek A. 2022. Biochemical characterization and detection of antitumor activity of L-asparaginase from thermophilic Geobacillus kaustophilus DSM 7263T. Protein Expr Purif. 199:106146. doi: 10.1016/j.pep.2022.106146.
  • Özdemir Fİ, Karaaslan B, Tülek A, Yucebilgic G, Yildirim D. 2023. Immobilization of recombinant L-asparaginase from Geobacillus kaustophilus on magnetic MWCNT-nickel composites. Process Biochem. 127:10–20. doi: 10.1016/j.procbio.2023.01.021.
  • Palermo M, Gökmen V, De Meulenaer B, Ciesarová Z, Zhang Y, Pedreschi F, Fogliano V. 2016. Acrylamide mitigation strategies: critical appraisal of the FoodDrinkEurope toolbox. Food Funct. 7(6):2516–2525. doi: 10.1039/c5fo00655d.
  • Pan M, Liu K, Yang J, Hong L, Xie X, Wang S. 2020. Review of research into the determination of acrylamide in foods. Foods. 9(4):524. doi: 10.3390/foods9040524.
  • Prlainović NŽ, Knežević-Jugović ZD, Mijin DŽ, Bezbradica DI. 2011. Immobilization of lipase from Candida rugosa on Sepabeads®: the effect of lipase oxidation by periodates. Bioprocess Biosyst Eng. 34(7):803–810. doi: 10.1007/S00449-011-0530-2/metrics.
  • Rifai L, Saleh FA. 2020. A review on acrylamide in food: occurrence, toxicity, and mitigation strategies. Int J Toxicol. 39(2):93–102. doi: 10.1177/1091581820902405.
  • Rodrigues RC, Berenguer-Murcia Á, Carballares D, Morellon-Sterling R, Fernandez-Lafuente R. 2021. Stabilization of enzymes via immobilization: multipoint covalent attachment and other stabilization strategies. Biotechnol Adv. 52:107821. doi: 10.1016/J.biotechadv.2021.107821.
  • Schouten MA, Tappi S, Romani S. 2020. Acrylamide in coffee: formation and possible mitigation strategies – a review. Crit Rev Food Sci Nutr. 60(22):3807–3821. doi: 10.1080/10408398.2019.1708264.
  • Sheldon RA, Basso A, Brady D. 2021. New frontiers in enzyme immobilisation: robust biocatalysts for a circular bio-based economy. Chem Soc Rev. 50(10):5850–5862. doi: 10.1039/d1cs00015b.
  • Sun Z, Qin R, Li D, Ji K, Wang T, Cui Z, Huang Y. 2016. A novel bacterial type II L-asparaginase and evaluation of its enzymatic acrylamide reduction in French fries. Int J Biol Macromol. 92:232–239. doi: 10.1016/j.ijbiomac.2016.07.031.
  • Tamanna N, Mahmood N. 2015. Food processing and Maillard reaction products: effect on human health and nutrition. Int J Food Sci. 2015:526762–526766. doi: 10.1155/2015/526762.
  • Tülek A, Yıldırım D, Aydın D, Binay B. 2021. Highly-stable Madurella mycetomatis laccase immobilized in silica-coated ZIF-8 nanocomposites for environmentally friendly cotton bleaching process. Colloids Surf B Biointerfaces. 202:111672. doi: 10.1016/j.colsurfb.2021.111672.
  • Ulu A, Ates B. 2017. Immobilization of L-asparaginase on carrier materials: a comprehensive review. Bioconjug Chem. 28(6):1598–1610. doi: 10.1021/acs.bioconjchem.7b00217.
  • Ulu A, Koytepe S, Ates B. 2016. Design of starch functionalized biodegradable P(MAA-co-MMA) as carrier matrix for L-asparaginase immobilization. Carbohydr Polym. 153:559–572. doi: 10.1016/j.carbpol.2016.08.019.
  • Ulu A, Noma SAA, Koytepe S, Ates B. 2018. Magnetic Fe3O4@MCM-41 core–shell nanoparticles functionalized with thiol silane for efficient L-asparaginase immobilization. Artif Cells Nanomed Biotechnol. 46(sup2):1035–1045. doi: 10.1080/21691401.2018.1478422.
  • van Trimpont M, Peeters E, de Visser Y, Schalk AM, Mondelaers V, de Moerloose B, Lavie A, Lammens T, Goossens S, van Vlierberghe P. 2022. Novel insights on the use of L-asparaginase as an efficient and safe anti-cancer therapy. Cancers (Basel). 14(4):902. doi: 10.3390/cancers14040902.
  • Vattem D, Shetty K. 2003. Acrylamide in food: a model for mechanism of formation and its reduction. Innov Food Sci Emerg Technol. 4(3):331–338. doi: 10.1016/s1466-8564(03)00033-x.
  • Wang Y, Xu W, Wu H, Zhang W, Guang C, Mu W. 2021. Microbial production, molecular modification, and practical application of L-asparaginase: a review. Int J Biol Macromol. 186:975–983. doi: 10.1016/j.ijbiomac.2021.07.107.
  • Yang H, Yang S, Kong J, Dong A, Yu S. 2015. Obtaining information about protein secondary structures in aqueous solution using Fourier transform IR spectroscopy. Nat Protoc. 10(3):382–396. doi: 10.1038/nprot.2015.024.
  • Yassin MA, Shindia A, Labib M, Soud M, El-Sayed ASA. 2022. Thermostable chitosan-Lasparaginase conjugate from Aspergillus fumigatus is a novel structurally stable composite for abolishing acrylamide formation in French fried potatoes. LWT - Food Sci. Technol. 162:113494. doi: 10.1016/j.lwt.2022.113494.
  • Yücel Y. 2012. Optimization of immobilization conditions of Thermomyces lanuginosus lipase on olive pomace powder using response surface methodology. Biocatal Agric Biotechnol. 1(1):39–44. doi: 10.1016/j.bcab.2011.08.009.
  • Zhang K, Yang W, Liu Y, Zhang K, Chen Y, Yin X. 2020. Laccase immobilized on chitosan-coated Fe3O4 nanoparticles as reusable biocatalyst for degradation of chlorophenol. J Mol Struct. 1220:128769. doi: 10.1016/j.molstruc.2020.128769.
  • Zucca P, Sanjust E. 2014. Inorganic materials as supports for covalent enzyme immobilization: methods and mechanisms. Molecules. 19(9):14139–14194. doi: 10.3390/molecules190914139.
  • Zuo S, Zhang T, Jiang B, Mu W. 2015. Reduction of acrylamide level through blanching with treatment by an extremely thermostable L-asparaginase during French fries processing. Extremophiles. 19(4):841–851. doi: 10.1007/s00792-015-0763-0/metrics.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.