139
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Zinc hydroxide salts as new supports for the immobilization of Pseudomonas cepacia lipase

, , &
Pages 466-479 | Received 15 May 2023, Accepted 22 Sep 2023, Published online: 05 Oct 2023

References

  • Al-Duri B, Yong YP. 1997. Characterisation of the equilibrium behaviour of lipase PS (from Pseudomonas) and lipolase 100L (from Humicola) onto Accurel EP100. J Mol Catal B: enzym. 3(1-4):177–188. doi: 10.1016/S1381-1177(96)00052-5.
  • Alnoch RC, Martini VP, Glogauer A, Costa ACDS, Piovan L, Muller-Santos M, De Souza EM, Pedrosa FDO, Mitchell DA, Krieger N. 2015. Immobilization and characterization of a new regioselective and enantioselective lipase obtained from a metagenomic library. PLOS One. 10(2):e0114945. doi: 10.1371/journal.pone.0114945.
  • Arizaga GGC, Satyanarayana KG, Wypych F. 2007. Layered hydroxide salts: synthesis, properties and potential applications. Solid State Ion. 178(15–18):1143–1162. doi: 10.1016/j.ssi.2007.04.016.
  • Basso A, Serban S. 2019. Industrial applications of immobilized enzymes—A review. J Mol Catal. 479:110607. doi: 10.1016/j.mcat.2019.110607.
  • Bolivar JM, Woodley JM, Fernandez-Lafuente R. 2022. Is enzyme immobilization a mature discipline? Some critical considerations to capitalize on the benefits of immobilization. Chem Soc Rev. 51(15):6251–6290. doi: 10.1039/D2CS00083K.
  • Chen CS, Fujimoto Y, Girdaukas G, Sih CJ. 1982. Quantitative analyses of biochemical kinetic resolutions of enantiomers. J Am Chem Soc. 104(25):7294–7299. doi: 10.1021/ja00389a064.
  • Datta S, Christena LR, Rajaram YRS. 2013. Enzyme immobilization: an overview on techniques and support materials. 3 Biotech. 3(1):1–9. doi: 10.1007/s13205-012-0071-7.
  • Dhake KP, Deshmukh KM, Wagh YS, Singhal RS, Bhanage BM. 2012. Investigation of steapsin lipase for kinetic resolution of secondary alcohols and synthesis of valuable acetates in non-aqueous reaction medium. J Mol Catal B: Enzym. 77:15–23. doi: 10.1016/j.molcatb.2012.01.009.
  • Dias GS, Bandeira PT, Jaerger S, Piovan L, Mitchell DA, Wypych F, Krieger N. 2019. Immobilization of Pseudomonas cepacia lipase on layered double hydroxide of Zn/Al-Cl for kinetic resolution of rac-1-phenylethanol. Enzyme Microb Technol. 130:109365. doi: 10.1016/j.enzmictec.2019.109365.
  • Dias M, de Pauloveloso A, do Amaral L, Betim R, Nascimento M, Pilissão C. 2018. Immobilization of Burkholderia cepacia on pristine or functionalized multi‑walled carbon nanotubes and application on enzymatic resolution of (RS)‑1‑Phenylethanol. J Braz Chem Soc. 29:1876–1884. doi: 10.21577/0103-5053.20180063.
  • Dong L, Ge C, Qin P, Chen Y, Xu Q. 2014. Immobilization and catalytic properties of candida lipolytic lipase on surface of organic intercalated and modified MgAl-LDHs. Solid State Sci. 31:8–15. doi: 10.1016/j.solidstatesciences.2014.02.006.
  • do Amaral LFM, Pilissão C, Krieger N, Wypych F. 2023. Pseudomonas cepacia lipase immobilized on Zn2Al layered double hydroxides: evaluation of different methods of immobilization for the kinetic resolution of (R,S)-1-phenylethanol. Biocatal Biotransfor. :1–15. doi: 10.1080/10242422.2023.2181047.
  • da Rocha MG, Nakagaki S, Ucoski GM, Wypych F, Sippel Machado G. 2019. Comparison between catalytic activities of two zinc layered hydroxide salts in brilliant green organic dye bleaching. J Colloid Interface Sci. 541:425–433. doi: 10.1016/j.jcis.2019.01.111.
  • da Silva MLN, Marangoni R, Cursino A, CT, Schreiner WH, Wypych F. 2012. Colorful and transparent poly(vinyl alcohol) composite films filled with layered zinc hydroxide salts, intercalated with anionic orange azo dyes (methyl orange and orange II). Mater Chem Phys. 134(1):392–398. doi: 10.1016/j.matchemphys.2012.03.007.
  • Dulęba J, Siódmiak T, Marszałł MP. 2022. The influence of substrate systems on the enantioselective and lipolytic activity of immobilized Amano PS from Burkholderia cepacia lipase (APS-BCL). Process Biochem. 120:126–137. doi: 10.1016/j.procbio.2022.06.003.
  • Dwivedee BP, Bhaumik J, Rai SK, Laha JK, Banerjee UC. 2017. Development of nanobiocatalysts through the immobilization of Pseudomonas fluorescens lipase for applications in efficient kinetic resolution of racemic compounds. Bioresour Technol. 239:464–471. doi: 10.1016/j.biortech.2017.05.050.
  • Dwivedee BP, Soni S, Bhimpuria R, Laha JK, Banerjee UC. 2019. Tailoring a robust and recyclable nanobiocatalyst by immobilization of Pseudomonas fluorescens lipase on carbon nanofiber and its application in synthesis of enantiopure carboetomidate analogue. Int J Biol Macromol. 133:1299–1310. doi: 10.1016/j.ijbiomac.2019.03.231.
  • Fernandez-Lafuente R, Armisén P, Sabuquillo P, Fernández-Lorente G, M. Guisán J. 1998. Immobilization of lipases by selective adsorption on hydrophobic supports. Chem Phys Lipids. 93(1–2):185–197. doi: 10.1016/S0009-3084(98)00042-5.
  • Forano C, Vial S, Mousty C. 2006. Nanohybrid enzymes - layered double hydroxides: potential applications. CNANO. 2(3):283–294. doi: 10.2174/1573413710602030283.
  • Habulin M, Knez Ž. 2009. Optimization of (R,S)-1-phenylethanol kinetic resolution over Candida antarctica lipase B in ionic liquids. J Mol Catal B: enzym. 58(1-4):24–28. doi: 10.1016/j.molcatb.2008.10.007.
  • Hasan F, Shah AA, Hameed A. 2006. Industrial applications of microbial lipases. Enzyme Microb Technol. 39(2):235–251. doi: 10.1016/j.enzmictec.2005.10.016.
  • Jaerger S, Zimmermann A, Zawadzki SF, Wypych F, Amico SC. 2014. Zinc layered hydroxide salts: intercalation and incorporation into low-density polyethylene. Polímeros. 24(6):673–682. doi: 10.1590/0104-1428.1733.
  • Joseph B, Ramteke PW, Thomas G. 2008. Cold active microbial lipases: some hot issues and recent developments. Biotechnol Adv. 26(5):457–470. doi: 10.1016/j.biotechadv.2008.05.003.
  • Kisukuri CM, Macedo A, Oliveira CCS, Camargo PHC, Andrade LH. 2013. Investigating the influence of the nterface in thiol-functionalized silver–gold nanoshells over lipase activity. Langmuir. 29(51):15974–15980. doi: 10.1021/la404081n.
  • Klibanov AM. 1997. Why are enzymes less active in organic solvents than in water? Trends Biotechnol. 15(3):97–101. doi: 10.1016/S0167-7799(97)01013-5.
  • Krieger N, Bhatnagar T, Baratti JC, Baron AM, De Lima VM, Mitchell D. 2004. Non-aqueous biocatalysis in heterogeneous solvent systems. Food Technol Biotechnol. 42(4):279–286.
  • Li K, Wang J, He Y, Cui G, Abdulrazaq MA, Yan Y. 2018. Enhancing enzyme activity and enantioselectivity of Burkholderia cepacia lipase via immobilization on melamine-glutaraldehyde dendrimer modified magnetic nanoparticles. J Chem Eng. 351:258–268. doi: 10.1016/j.cej.2018.06.086.
  • Lowry RR, Tinsley IJ. 1976. Rapid colorimetric determination of free fatty acids. J Am Oil Chem Soc. 53(7):470–472. doi: 10.1007/BF02636814.
  • Machado GS, Arízaga GGC, Wypych F, Nakagaki S. 2010. Immobilization of anionic metalloporphyrins on zinc hydroxide nitrate and study of an unusual catalytic activity. J Catal. 274(2):130–141. doi: 10.1016/j.jcat.2010.06.012.
  • Machado GS, Wypych F, Nakagaki S. 2012. Anionic iron(III) porphyrins immobilized on zinc hydroxide chloride as catalysts for heterogeneous oxidation reactions. Appl Catal, A. 413–414:94–102. doi: 10.1016/j.apcata.2011.10.046.
  • Majoni S, Su S, Hossenlopp JM. 2010. The effect of boron-containing layered hydroxy salt (LHS) on the thermal stability and degradation kinetics of poly (methyl methacrylate). Polym Degrad Stab. 95(9):1593–1604. doi: 10.1016/j.polymdegradstab.2010.05.033.
  • Manoel EA, dos Santos JCS, Freire DMG, Rueda N, Fernandez-Lafuente R. 2015. Immobilization of lipases on hydrophobic supports involves the open form of the enzyme. Enzyme Microb Technol. 71:53–57. doi: 10.1016/j.enzmictec.2015.02.001.
  • Marangoni R, Ramos LP, Wypych F. 2009. New multifunctional materials obtained by the intercalation of anionic dyes into layered zinc hydroxide nitrate followed by dispersion into poly(vinyl alcohol) (PVA). J Colloid Interface Sci. 330(2):303–309. doi: 10.1016/j.jcis.2008.10.081.
  • Mateo C, Palomo JM, Fernandez-Lorente G, Guisan JM, Fernandez-Lafuente R. 2007. Improvement of enzyme activity, stability and selectivity via immobilization techniques. Enzyme Microb Technol. 40(6):1451–1463. doi: 10.1016/j.enzmictec.2007.01.018.
  • Nguyen LA, He H, Pham-Huy C. 2006. Chiral drugs: an overview. Int J Biomed Sci. 2(2):85–100.
  • Ortiz C, Ferreira ML, Barbosa O, dos Santos JCS, Rodrigues RC, Berenguer-Murcia Á, Briand LE, Fernandez-Lafuente R. 2019. Novozym 435: the “perfect” lipase immobilized biocatalyst? Catal Sci Technol. 9(10):2380–2420. doi: 10.1039/C9CY00415G.
  • Persson M, Mladenoska I, Wehtje E, Adlercreutz P. 2002. Preparation of lipases for use in organic solvents. Enzyme Microb Technol. 31(6):833–841. doi: 10.1016/S0141-0229(02)00184-9.
  • Pinheiro BB, Rios NS, Rodríguez Aguado E, Fernandez-Lafuente R, Freire TM, Fechine P, BA, dos Santos JCS, Gonçalves L, R, B. 2019. Chitosan activated with divinyl sulfone: a new heterofunctional support for enzyme immobilization. Application in the immobilization of lipase B from Candida antarctica. Int J Biol Macromol. 130:798–809. doi: 10.1016/j.ijbiomac.2019.02.145.
  • Santos J, dos CS, Barbosa O, Ortiz C, Berenguer-Murcia A, Rodrigues RC, Fernandez-Lafuente R. 2015. Importance of the support properties for immobilization or purification of enzymes. ChemCatChem. 7(16):2413–2432. doi: 10.1002/cctc.201500310.
  • Santos LA, dos Alnoch RC, Soares GA, Mitchell DA, Krieger N. 2022. Immobilization of Pseudomonas fluorescens lipase on chitosan crosslinked with polyaldehyde starch for kinetic resolution of sec-alcohols. Process Biochem. 122:238–247. doi: 10.1016/j.procbio.2022.10.014.
  • Smith PK, Krohn RI, Hermanson GT, Mallia AK, Gartner FH, Provenzano MD, Fujimoto EK, Goeke NM, Olson BJ, Klenk DC. 1985. Measurement of protein using bicinchoninic acid. Anal Biochem. 150(1):76–85. doi: 10.1016/0003-2697(85)90442-7.
  • Soares D, Serres JDDS, Corazza ML, Mitchell DA, Gonçalves AG, Krieger N. 2015. Analysis of multiphasic behavior during the ethyl esterification of fatty acids catalyzed by a fermented solid with lipolytic activity in a packed-bed bioreactor in a closed-loop batch system. Fuel. 159:364–372. doi: 10.1016/j.fuel.2015.06.087.
  • Taviot-Guého C, Prévot V, Forano C, Renaudin G, Mousty C, Leroux F. 2018. Tailoring hybrid layered double hydroxides for the development of innovative applications. Adv Funct Materials. 28(27):1703868. doi: 10.1002/adfm.201703868.
  • Tiss A, Carrière F, Verger R. 2001. Effects of gum Arabic on lipase interfacial binding and activity. Anal Biochem. 294(1):36–43. doi: 10.1006/abio.2001.5095.
  • Velazquez-Carriles C, Macias-Rodríguez ME, Carbajal-Arizaga GG, Silva-Jara J, Angulo C, Reyes-Becerril M. 2018. Immobilizing yeast β-glucan on zinc-layered hydroxide nanoparticle improves innate immune response in fish leukocytes. Fish Shellfish Immunol. 82:504–513. doi: 10.1016/j.fsi.2018.08.055.
  • Wang M, Bao W-J, Wang J, Wang K, Xu J-J, Chen H-Y, Xia X-H. 2014. A green approach to the synthesis of novel “Desert rose stone”-like nanobiocatalytic system with excellent enzyme activity and stability. Sci Rep. 4(1):6606. doi: 10.1038/srep06606.
  • Zheng M, Xiang X, Wang S, Shi J, Deng Q, Huang F, Cong R. 2017. Lipase immobilized in ordered mesoporous silica: a powerful biocatalyst for ultrafast kinetic resolution of racemic secondary alcohols. Process Biochem. 53:102–108. doi: 10.1016/j.procbio.2016.12.005.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.