296
Views
4
CrossRef citations to date
0
Altmetric
Research Article

Rutting characteristics evaluation and prediction model development for warm mix asphalt

ORCID Icon & ORCID Icon
Article: 2165656 | Received 14 Jul 2022, Accepted 02 Jan 2023, Published online: 01 Feb 2023

References

  • Abu Qtaish, L., et al., 2018. Micromechanical and chemical characterization of foamed warm-mix asphalt aging. Journal of Materials in Civil Engineering, 30 (9), 04018213, 1–9. doi:10.1061/(asce)mt.1943-5533.0002430.
  • Al-Omari, A. A., Khedaywi, T. S., and Khasawneh, M. A, 2018. Laboratory characterization of asphalt binders modified with waste vegetable oil using superpave specifications. International Journal of Pavement Research and Technology, 11 (1), 68–76. doi:10.1016/j.ijprt.2017.09.004.
  • Asmael, N. M., Fattah, M. Y., and Kadhim, A. J, 2020. Evaluate resistance of warm asphalt mixtures to rutting. IOP Conference Series: Materials Science and Engineering, 745 (1). doi:10.1088/1757-899X/745/1/012109.
  • ASTM D2493, 2016. Standard practice for viscosity-temperature chart for asphalt binders. doi:10.1520/D2493-16.
  • ASTM D2669, 2016. Standard test method for apparent viscosity of petroleum waxes compounded with additives (hot melts). doi:10.1520/D2669-16.
  • ASTM D4052, 2022. Standard test method for density, relative density, and API gravity of liquids by digital density meter. doi:10.1520/D4052-22.
  • ASTM D4402, 2015. Standard test method for viscosity determination of asphalt at elevated temperatures using a rotational viscometer. ASTM International. doi:10.1520/D4402_D4402M-15R22.
  • ASTM D445, 2021. Standard test method for kinematic viscosity of transparent and opaque liquids (and calculation of dynamic viscosity). doi:10.1520/D0445-21.
  • ASTM D6926-20, 2020. Standard practice for preparation of asphalt mixture specimens using Marshall apparatus. ASTM International.
  • ASTM D7173, 2020. Standard practice for determining the separation tendency of polymer from polymer-modified asphalt. doi:10.1520/D7173-20.
  • ASTM D7405, 2020. Standard test method for multiple stress creep and recovery (MSCR) of asphalt binder using a dynamic shear rheometer. doi:10.1520/D7405-20.
  • ASTM D792, 2020. Standard test methods for density and specific gravity (relative density) of plastics by displacement. Annual book of ASTM standards. doi:10.1520/D0792-20.
  • ASTM D87, 2018. Standard test method for melting point of petroleum wax (cooling curve). doi:10.1520/D0087-09R18.
  • ASTM D938, 2017. Standard test method for congealing point of petroleum waxes, including petrolatum. doi:10.1520/D0938-12R17.
  • Azahar, W. N. A. W., et al., 2017. Mechanical performance of asphaltic concrete incorporating untreated and treated waste cooking oil. Construction and Building Materials, 150, 653–663. doi:10.1016/j.conbuildmat.2017.06.048.
  • Bairgi, B. K., et al., 2020. Comprehensive evaluation of rutting of warm-mix asphalt utilizing long-term pavement performance specific pavement studies. Transportation Research Record, 2674 (7), 272–283. doi:10.1177/0361198120921852.
  • Bayazit, M., Das, P. K., and Tasdemir, Y, 2014. Moisture susceptibility of warm mix asphalt. Indian Journal of Engineering and Materials Sciences, 21 (6), 683–691. doi:10.1201/b17219-87.
  • Bower, N., et al., 2016. Evaluation of the performance of warm mix asphalt in Washington state. International Journal of Pavement Engineering, 17 (5), 423–434. doi:10.1080/10298436.2014.993199.
  • Cai, X., et al., 2017. Evaluation of rutting performance of asphalt mixture with driving wheel pavement analyzer. Advances in Materials Science and Engineering, 2017. doi:10.1155/2017/6301914.
  • Castellanelli, C. A., and Mello, C. L. de., 2006. Analyzes of the used fried oil under environmental perspective and its possibilities for production of biodiesel.
  • Chamoun, Z., et al., 2015. Evaluation of select warm mix additives with polymer and rubber modified asphalt mixtures. Canadian Journal of Civil Engineering. doi:10.1139/cjce-2013-0512.
  • Coleri, E., Tsai, B. W., and Monismith, C. L, 2008. Pavement rutting performance prediction by integrated Weibull approach. Transportation Research Record, 2087, 120–130. doi:10.3141/2087-13.
  • D’Angelo, J. A, 2009. The relationship of the MSCR test to rutting. Road Materials and Pavement Design, 10, 61–80. doi:10.1080/14680629.2009.9690236.
  • Dokandari, P. A., and Topal, A, 2015. Effects of warm mix asphalt additives on aging characteristics of bituminous mixtures. Periodica Polytechnica Civil Engineering, 59 (4), 475–486. doi:10.3311/PPci.7364.
  • Edwards, Y, 2009. Influence of waxes on bitumen and asphalt concrete mixture performance. Road Materials and Pavement Design, 10 (2), 313–335. doi:10.1080/14680629.2009.9690197.
  • Edwards, Y., and Redelius, P, 2003. Rheological effects of waxes in bitumen. Energy and Fuels, 17 (3), 511–520. doi:10.1021/ef020202b.
  • Eldeek, M. I., et al., 2022. Utilization of waste cooking oil as a sustainable product to improve the physical and rheological properties of asphalt binder: a review. Road and Airfield Pavement Technology, Lecture Notes in Civil Engineering, 193, 883–901. doi:10.1007/978-3-030-87379-0_66.
  • EN 12697-22, 2003. Bituminous mixtures – test methods for hot mix asphalt – part 22: wheel tracking. European Standard, 1–29.
  • EN 12697-33, 2003. Bituminous mixtures – Test methods for hot mix asphalt – Part 33: specimen prepared by roller compactor. European Standard, 1–9.
  • Fadhil, T. H., Ibrahim, R. K., and Fathullah, H. S, 2020. The influence of curing methods on Marshall stability and flow. IOP Conference Series: Materials Science and Engineering, 671 (1), 012132. doi:10.1088/1757-899X/671/1/012132.
  • Frigio, F., et al., 2016. Aging effects on recycled WMA porous asphalt mixtures. Construction and Building Materials, 123, 712–718. doi:10.1016/j.conbuildmat.2016.07.063.
  • Garcia, A., Austin, C. J., and Jelfs, J, 2016. Mechanical properties of asphalt mixture containing sunflower oil capsules. Journal of Cleaner Production, 118, 124–132. doi:10.1016/j.jclepro.2016.01.072.
  • Garcia, J., and Hansen, K, 2001. HMA pavement mix type selection guide – information series 128. National Asphalt Pavement Association (NAPA) and U.S. Department of Transportation, Federal Highway Administration, 30.
  • Ghabchi, R., Singh, D., and Zaman, M, 2015. Laboratory evaluation of stiffness, low-temperature cracking, rutting, moisture damage, and fatigue performance of WMA mixes. Road Materials and Pavement Design, 16 (2), 334–357. doi:10.1080/14680629.2014.1000943.
  • Ghuzlan, K. A., and Al Assi, M. O., 2017. Sasobit-modified asphalt binder rheology. Journal of Materials in Civil Engineering, 29 (9), 04017142, 1–9. doi:10.1061/(asce)mt.1943-5533.0001996.
  • Gibson, N., et al., 2012. Performance testing for superpave and structural validation. November, 271.
  • Hawesah, H. Al, et al., 2022. Polymer modified asphalt binder – an approach for enhancing temperature sensitivity for emergency pavement repair. International Journal of Pavement Engineering, 23 (13), 4760–4774. doi:10.1080/10298436.2021.1975704.
  • Hou, X., et al., 2018. Applications of Fourier transform infrared spectroscopy technologies on asphalt materials. Measurement: Journal of the International Measurement Confederation, 121, 304–316. doi:10.1016/j.measurement.2018.03.001.
  • Hurley, G. C., and Prowell, B. D., 2006. Evaluation of potential processes for use in warm mix asphalt. Auburn, AL: National Center for Asphalt Technology (NCAT), Report No. 06-04.
  • IRC: 111, 2009. Specifications for dense graded bituminous mixes. In: Indian Roads Congress, 32.
  • IRC: SP: 53, 2010. Guidelines on use of modified bitumen in road construction. In: Indian Roads Congress, 36.
  • IS:1202, 1978. Indian standard methods for testing tar and bituminous materials: determination of specific gravity. Bureau of Indian Standards.
  • IS:1203, 1978. Indian standard methods for testing tar and bituminous materials: determination of penetration. Bureau of Indian Standards.
  • IS:1205, 1978. Indian standard methods for testing tar and bituminous materials: determination of softening point. Bureau of Indian Standards.
  • IS:1206 (Part II), 1978. Indian standard methods for testing tar and bituminous materials: determination of viscosity: part II absolute viscosity. Bureau of Indian Standards.
  • IS:1206 (Part III), 1978. Indian standard methods for testing tar and bituminous materials: determination of viscosity: part III kinematic viscosity. Bureau of Indian Standards.
  • IS 1448-69, 1969. Methods of test for petroleum and its products, part 69: flash and fire point by Cleveland (open) cup. Bureau of Indian Standards.
  • IS 2386-1, 2002. Methods of test for aggregates for concrete, part I: particle size and shape. New Delhi: Bureau of Indian Standards.
  • IS 2386-3, 2002. Methods of test for aggregate for concrete, part 3: specific gravity, density, voids, absorption and bulking. New Delhi: Bureau of Indian Standards.
  • IS 2386-4, 2002. Methods of test for aggregates for concrete, part 4 : mechanical properties. New Delhi: Bureau of Indian Standards.
  • IS 2386-5, 2002. Methods of test for aggregates for concrete, part V: soundness. Bureau of Indian Standards.
  • IS:6241, 1971. Method of test for determination of stripping value of road aggregate. Bureau of Indian Standards.
  • IS: 73, 2013. Paving bitumen – specification. New Delhi: Bureau of Indian Standards, April, 1–4.
  • IS:9382, 1979. Methods for testing tar and bituminous materials: determination of effect of heat and air by thin film oven tests.
  • Jamaloei, M. H., Esfahani, M. A., and Torkaman, M. F, 2019. Rheological and mechanical properties of bitumen modified with Sasobit, polyethylene, paraffin, and their mixture. Journal of Materials in Civil Engineering, 31 (7), 04019119. doi:10.1061/(asce)mt.1943-5533.0002664.
  • Jamshidi, A., Hamzah, M. O., and You, Z, 2013. Performance of warm mix asphalt containing Sasobit®: state-of-the-art. Construction and Building Materials, 38, 530–553. doi:10.1016/j.conbuildmat.2012.08.015.
  • Julaganti, A., Choudhary, R., and Kumar, A, 2019. Permanent deformation characteristics of warm asphalt binders under reduced aging conditions. KSCE Journal of Civil Engineering, 23 (1), 160–172. doi:10.1007/s12205-017-1903-0.
  • Kabir, I., Yacob, M., and Radam, A, 2014. Households’ awareness, attitudes and practices regarding waste cooking oil recycling in Petaling, Malaysia. IOSR Journal of Environmental Science, Toxicology and Food Technology, 8 (10), 45–51. doi:10.9790/2402-081034551.
  • Kajugaran, S., and Weragoda, V. S. C, 2016. Development of polymer modified asphalt using filler. In: 2nd International Moratuwa Engineering Research Conference, MERCon 2016, 355–360. doi:10.1109/MERCon.2016.7480167.
  • Kandhal, P. S., and Cooley, L. Allen, 2003. Accelerated laboratory rutting tests: evaluation of the asphalt pavement analyzer. National Cooperative Highway Research Program, NCHRP Report 508.
  • Khan, S., et al., 2013. Rutting in flexible pavement: an approach of evaluation with accelerated pavement testing facility. Procedia – Social and Behavioral Sciences, 104, 149–157. doi:10.1016/j.sbspro.2013.11.107.
  • Kumar, T. A., et al., 2019. Quantification of aging compounds in evotherm-modified warm-mix asphalt binder using Fourier transform infrared spectroscopy. Arabian Journal for Science and Engineering, 44 (10), 8429–8437. doi:10.1007/s13369-019-03965-w.
  • Lamperti, R., et al., 2015. Influence of waxes on adhesion properties of bituminous binders. Construction and Building Materials, 76, 404–412. doi:10.1016/j.conbuildmat.2014.11.058.
  • Lee, S.-J., Amirkhanian, S. N., and Kwon, S.-Z, 2008. The effects of compaction temperature on CRM mixtures made with the SGC and the Marshall compactor. Construction and Building Materials, 22 (6), 1122–1128. doi:10.1016/j.conbuildmat.2007.03.003.
  • Li, C., et al., 2020. Impact of waste cooking oil on the viscosity, microstructure and mechanical performance of warm-mix epoxy asphalt binder. Construction and Building Materials, 251, 118994. doi:10.1016/j.conbuildmat.2020.118994.
  • Lu, X., et al., 2016. Multiple stress creep and recovery tests of bituminous binders and correlation to asphalt concrete rutting performance. July. Available from: https://www.researchgate.net/publication/324257971.
  • Lu, X., and Redelius, P, 2006. Compositional and structural characterization of waxes isolated from bitumens. Energy and Fuels, 20 (2), 653–660. doi:10.1021/ef0503414.
  • Lv, Q., et al., 2019. Investigation of the rutting performance of various modified asphalt mixtures using the Hamburg wheel-tracking device test and multiple stress creep recovery test. Construction and Building Materials, 206, 62–70. doi:10.1016/j.conbuildmat.2019.02.015.
  • Math, M. C., Kumar, S. P., and Chetty, S. V, 2010. Technologies for biodiesel production from used cooking oil – a review. Energy for Sustainable Development, 14 (4), 339–345. doi:10.1016/j.esd.2010.08.001.
  • Mazumder, M., Kim, H., and Lee, S.-J, 2016. Performance properties of polymer modified asphalt binders containing wax additives. International Journal of Pavement Research and Technology, 9 (2), 128–139. doi:10.1016/j.ijprt.2016.03.004.
  • Mendez Larrain, M. M., and Tarefder, R. A., 2016. Weibull model for rutting prediction of warm-mix asphalt agents using Hamburg wheel-tracking device results. Transportation Research Record: Journal of the Transportation Research Board, 2575 (September), 206–212. doi:10.3141/2575-22.
  • Miljkovic, M., and Radenberg, M, 2011. Rutting mechanisms and advanced laboratory testing of asphalt mixtures resistance against permanent deformation. Facta Universitatis – Series: Architecture and Civil Engineering, 9 (3), 407–417. doi:10.2298/fuace1103407m.
  • Moafimadani, S. R., Rahimov, K., and Hesami, S, 2016. The effect of warm additive on the properties and behavior of an asphalt binder. Petroleum Science and Technology, 34 (19), 1654–1662. doi:10.1080/10916466.2016.1217238.
  • Nakhaei, M., et al., 2016. Rutting and moisture resistance evaluation of polyethylene wax-modified asphalt mixtures. Petroleum Science and Technology, 34 (17–18), 1568–1573. doi:10.1080/10916466.2016.1212209.
  • Naqibah, S. N., et al., 2019. Performance of rutting, stripping and cracking of warm mix asphalt. IOP Conference Series: Materials Science and Engineering, 527 (1). doi:10.1088/1757-899X/527/1/012062.
  • Nasrekani, A. A., et al., 2018. Chemical, rheological, and moisture resistance properties of warm mix asphalt modified with polyethylene-wax and ethylene-bis-stearamide additives. Transportation Research Board, 152 (021), 1–17.
  • Omari, I., Aggarwal, V., and Hesp, S, 2016. Investigation of two warm mix asphalt additives. International Journal of Pavement Research and Technology, 9 (2), 83–88. doi:10.1016/j.ijprt.2016.02.001.
  • Oner, J., and Sengoz, B, 2018. Effect of polymers on rheological properties of waxy bitumens. Revista de La Construccion, 17 (2), 279–295. doi:10.7764/RDLC.17.2.279.
  • Peng, T., Wang, X., and Chen, S, 2013. Pavement performance prediction model based on Weibull distribution. Applied Mechanics and Materials, 378, 61–64. doi:10.4028/www.scientific.net/AMM.378.61.
  • Perraton, D., et al., 2011. Rutting of bituminous mixtures: wheel tracking tests campaign analysis. Materials and Structures/Materiaux et Constructions, 44 (5), 969–986. doi:10.1617/s11527-010-9680-y.
  • Portugal, A. C. X., et al., 2017a. Rheological performance of soybean in asphalt binder modification. Road Materials and Pavement Design, 19 (4), 768–782. doi:10.1080/14680629.2016.1273845.
  • Portugal, A. C. X., et al., 2017b. Rheological properties of asphalt binders prepared with maize oil. Construction and Building Materials, 152, 1015–1026. doi:10.1016/j.conbuildmat.2017.07.077.
  • Prakash, G., and Suman, S. K, 2022a. An intensive overview of warm mix asphalt (WMA) technologies towards sustainable pavement construction. Innovative Infrastructure Solutions, 7 (110). doi:10.1007/s41062-021-00712-9.
  • Prakash, G., and Suman, S. K, 2022b. Comparative assessment of CMSDBC and HMSDBC competency. In: Lecture Notes in Civil Engineering, Road and Airfield Pavement Technology – Proceedings of ICPT 2021, 629–643. doi:10.1007/978-3-030-87379-0.
  • Prakash, G., Suman, S. K., and Kumar, R, 2022. Evaluating the test protocols to determine the mixing and compaction temperatures of modified bitumen. Innovative Infrastructure Solutions, 7 (261). doi:10.1007/s41062-022-00863-3.
  • Rani, S., 2019. Characterization of rutting in asphalt pavements using laboratory testing. University of Oklahoma Graduate College.
  • Sanli, H., Canakci, M., and Alptekin, E, 2011. Characterization of waste frying oils obtained from different facilities. In: Proceedings of the World Renewable Energy Congress, 8–13 May 2011 Linköping, Sweden, 57, 479–485. doi:10.3384/ecp11057479.
  • Singh, D., Ashish, P. K., and Chitragar, S. F, 2018. Laboratory performance of recycled asphalt mixes containing wax and chemical based warm mix additives using semi circular bending and tensile strength ratio tests. Construction and Building Materials, 158, 1003–1014. doi:10.1016/j.conbuildmat.2017.10.080.
  • Soenen, H., et al., 2013. The multiple stress creep-recovery test: a detailed analysis of repeatability and reproducibility. Road Materials and Pavement Design, 14 (SUPPL.1), 2–11. doi:10.1080/14680629.2013.774742.
  • Tasdemir, Y, 2009. High temperature properties of wax modified binders and asphalt mixtures. Construction and Building Materials, 23 (10), 3220–3224. doi:10.1016/j.conbuildmat.2009.06.010.
  • Tayfur, S., Ozen, H., and Aksoy, A, 2007. Investigation of rutting performance of asphalt mixtures containing polymer modifiers. Construction and Building Materials, 21 (2), 328–337. doi:10.1016/j.conbuildmat.2005.08.014.
  • Topal, A., et al., 2017. Evaluation of rutting performance of warm mix asphalt. International Journal of Civil Engineering, 15 (4), 705–714. doi:10.1007/s40999-017-0188-5.
  • Walubita, L. F., et al., 2012. Hot-mix asphalt permanent deformation evaluated by Hamburg wheel tracking, dynamic modulus, and repeated load tests. Transportation Research Record: Journal of the Transportation Research Board, 2296, 46–56. doi:10.3141/2296-05.
  • Walubita, L. F., et al., 2014. HMA shear resistance, permanent deformation, and rutting tests for Texas mixes: final year-2 report. Vol. 7, Issue 2. Available from: http://tti.tamu.edu/documents/0-6744-2.pdf.
  • Walubita, L. F., et al., 2022. Correlating the asphalt-binder MSCR test results to the HMA HWTT and field rutting performance. Journal of Transportation Engineering, Part B: Pavements, 148 (3), 1–16. doi:10.1061/jpeodx.0000386.
  • Wang, C., et al., 2018. Laboratory investigation on chemical and rheological properties of bio-asphalt binders incorporating waste cooking oil. Construction and Building Materials, 167, 348–358. doi:10.1016/j.conbuildmat.2018.02.038.
  • Wen, H., Bhusal, S., and Wen, B, 2013. Laboratory evaluation of waste cooking oil-based bioasphalt as an alternative binder for hot mix asphalt. Journal of Materials in Civil Engineering, 25 (10), 1432–1437. doi:10.1061/(asce)mt.1943-5533.0000713.
  • White, T. D., et al., 2002. NCHRP report 468 – contributions of pavement structural layers to rutting of hot mix asphalt pavements. Transportation Research Board and American Association of State Highway and Transportation Officials, 65.
  • Xiao, F., Amirkhanian, S. N., and Putman, B. J, 2010. Evaluation of rutting resistance in warm-mix asphalts containing moist aggregate. Transportation Research Record: Journal of the Transportation Research Board, 2180, 75–84. doi:10.3141/2180-09.
  • Xiao, F., Punith, V. S., and Putman, B. J, 2013. Effect of compaction temperature on rutting and moisture resistance of foamed warm-mix-asphalt mixtures. Journal of Materials in Civil Engineering, 25 (9), 1344–1352. doi:10.1061/(asce)mt.1943-5533.0000664.
  • Xinxin, C., et al., 2018. Investigation on possibility of waste vegetable oil rejuvenating aged asphalt. Applied Sciences (Switzerland), 8 (5). doi:10.3390/app8050765.
  • Xu, T., and Huang, X, 2012. Investigation into causes of in-place rutting in asphalt pavement. Construction and Building Materials, 28 (1), 525–530. doi:10.1016/j.conbuildmat.2011.09.007.
  • Yin, F., et al., 2014. Novel method for moisture susceptibility and rutting evaluation using Hamburg wheel tracking test. Transportation Research Record, 2446, 1–7. doi:10.3141/2446-01.
  • Yu, X., Wang, Y., and Wei, T, 2013. The viscosity-reducing mechanism of organic wax additive on CRMA. Journal Wuhan University of Technology, Materials Science Edition, 28 (4), 726–732. doi:10.1007/s11595-013-0760-z.
  • Zhang, J., et al., 2015. Use of the MSCR test to characterize the asphalt binder properties relative to HMA rutting performance – a laboratory study. Construction and Building Materials, 94, 218–227. doi:10.1016/j.conbuildmat.2015.06.044.
  • Zhang, W., et al., 2017. Prediction model for field rut depth of asphalt pavement based on Hamburg wheel tracking test properties. Journal of Materials in Civil Engineering, 29 (9), 04017098. doi:10.1061/(asce)mt.1943-5533.0001946.
  • Zhang, Y., et al., 2021. Influence of different polyethylene wax additives on the performance of modified asphalt binders and mixtures. Construction and Building Materials, 302 (January), 124115. doi:10.1016/j.conbuildmat.2021.124115.
  • Zhao, W., et al., 2012. Characterization of rutting performance of warm additive modified asphalt mixtures. Construction and Building Materials, 31, 265–272. doi:10.1016/j.conbuildmat.2011.12.101.
  • Ziari, H., Babagoli, R., and Akbari, A, 2015. Investigation of fatigue and rutting performance of hot mix asphalt mixtures prepared by bentonite-modified bitumen. Road Materials and Pavement Design, 16 (1), 101–118. doi:10.1080/14680629.2014.982156.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.