419
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Investigation on the compaction process of steel bridge deck pavement based on DEM-FEM coupling model

ORCID Icon, , , &
Article: 2169443 | Received 08 Jul 2022, Accepted 09 Jan 2023, Published online: 09 Feb 2023

References

  • Airey, G., and Collop, A., 2016. Mechanical and structural assessment of laboratory and field-compacted asphalt mixtures. International Journal of Pavement Engineering, 17 (1), 50–63. doi:10.1080/10298436.2014.925551.
  • Chen, J., 2011. Discrete element method (DEM) analyses for hot-mix asphalt (HMA) mixture compaction. Doctoral dissertation. University of Tennessee-Knoxville.
  • Chen, L., et al., 2021. An innovative interface reinforcement method for steel bridge deck pavement pothole repair. Construction and Building Materials, 298, 123838. doi:10.1016/j.conbuildmat.2021.123838.
  • Desu, R.K., and Annabattula, R.K., 2019. Particle size effects on the contact force distribution in compacted polydisperse granular assemblies. Granular Matter, 21 (2), 29. doi:10.1007/s10035-019-0883-9.
  • Georgiou, P., Sideris, L., and Loizos, A., 2016. Evaluation of the effects of gyratory and field compaction on asphalt mix internal structure. Materials and Structures, 49 (1), 665–676. doi:10.1617/s11527-015-0528-3.
  • German, R., 2014. Coordination number changes during powder densification. Powder Technology, 253, 368–376. doi:10.1016/j.powtec.2013.12.006.
  • Ghandour, R., et al., 2010. Tire/road friction coefficient estimation applied to road safety. In: 18th Mediterranean Conference on Control and Automation, MED'10, IEEE, 1485–1490. doi:10.1109/MED.2010.5547840.
  • Haloui, Y., 2018. Micromechanical modeling of the interfacial zone in hot mix asphalt through use of a heterogeneous numerical method. European Journal of Environmental and Civil Engineering, 24 (11), 1–16. doi:10.1080/19648189.2018.1492462.
  • Han, D., et al., 2022. The instability of high-steep road cutting slope: a 3D continuum-discrete coupling method. Geofluids, 2022, Article 4010301. doi:10.1155/2022/4010301.
  • Hoornahad, H., and Koenders, E., 2014. Simulating macroscopic behavior of self-compacting mixtures with DEM. Cement and Concrete Composites, 54, 80–88. doi:10.1016/j.cemconcomp.2014.04.006.
  • Hu, W., et al., 2018. Geostatistical analysis of intelligent compaction measurements for asphalt pavement compaction. Automation in Construction, 89, 162–169. doi:10.1016/j.autcon.2018.01.012.
  • Huang, Q., et al., 2021. Investigation of warm mix epoxy asphalt compaction with gyratory compactor and charge coupled photoelectric imaging. Construction and Building Materials, 271, 121506. doi:10.1016/j.conbuildmat.2020.121506.
  • Imran, S.A., et al., 2017. Modeling the dynamics of asphalt-roller interaction during compaction. Journal of Construction Engineering and Management, 143 (7), 04017015. doi:10.1061/(ASCE)CO.1943-7862.0001293.
  • Khan, Z., et al., 1998. Comparative study of asphalt concrete laboratory compaction methods to simulate field compaction. Construction and Building Materials, 12 (6), 373–384. doi:10.1016/S0950-0618(98)00015-4.
  • Kim, T.W., et al., 2014. Effect of pavement design parameters on the behaviour of orthotropic steel bridge deck pavements under traffic loading. International Journal of Pavement Engineering, 15 (5), 471–482. doi:10.1080/10298436.2013.839790.
  • Liu, G., et al., 2022b. Influence of weld seam on the compaction characteristics of steel bridge deck pavement asphalt mixture. Construction and Building Materials, 347, 128564. doi:10.1016/j.conbuildmat.2022.128564.
  • Liu, Y., et al., 2022c. Investigation on segregation characteristics of thermosetting epoxy asphalt mixture during the compaction. Construction and Building Materials, 320, 126256. doi:10.1016/j.conbuildmat.2021.126256.
  • Liu, D., Chen, J., and Li, S., 2019. Collaborative operation and real-time control of roller fleet for asphalt pavement compaction. Automation in Construction, 98, 16–29. doi:10.1016/j.autcon.2018.11.005.
  • Liu, G., Qian, Z., and Xue, Y., 2022a. Comprehensive feasibility evaluation of a high-performance mixture used as the protective course of steel bridge deck pavement. Construction and Building Materials, 322, 126419. doi:10.1016/j.conbuildmat.2022.126419.
  • Masad, E., et al., 2016a. Finite element modelling of field compaction of hot mix asphalt. Part I: theory. International Journal of Pavement Engineering, 17 (1), 13–23. doi:10.1080/10298436.2013.863309.
  • Masad, E., et al., 2016b. Finite element modelling of field compaction of hot mix asphalt. Part II: applications. International Journal of Pavement Engineering, 17 (1), 24–38. doi:10.1080/10298436.2013.863310.
  • Micaelo, R., Azevedo, M., and Ribeiro, J., 2014. Hot-mix asphalt compaction evaluation with field tests. The Baltic Journal of Road and Bridge Engineering, 9 (4), 306–316. doi:10.3846/bjrbe.2014.37.
  • Neumann, J., et al., 2017. A framework for 3D synthetic mesoscale models of hot mix asphalt for the finite element method. Construction and Building Materials, 148, 857–873. doi:10.1016/j.conbuildmat.2017.04.033.
  • PFC3D, 2015. Particle flow code in 3 dimension, Version 5.0, User’s manual. ITASCA Consulting Group, Inc USA.
  • Tan, L., et al., 2021. Stress distribution and mechanical behaviour of rock mass containing two openings underground: analytical and numerical studies. Geofluids, 1917443. doi:10.1155/2021/1917443.
  • Tielmann, M.R.D., and Hill, T.J., 2018. Air void analyses on asphalt specimens using plane section preparation and image analysis. Journal of Materials in Civil Engineering, 30 (8), 04018189. doi:10.1061/(ASCE)MT.1943-5533.0002422.
  • Van den Berg, N., Xin, H., and Veljkovic, M., 2021. Effects of residual stresses on fatigue crack propagation of an orthotropic steel bridge deck. Materials & Design, 198, 109294. doi:10.1016/j.matdes.2020.109294.
  • Wang, L., et al., 2007. Fundamental mechanics of asphalt compaction through FEM and DEM modeling. Geotechnical Special Publication, 176, 45–63.
  • Wang, X., Zhang, M., and Jivkov, A., 2016. Computational technology for analysis of 3D meso-structure effects on damage and failure of concrete. International Journal of Solids and Structures, 80 (2016), 310–333. doi:10.1016/j.ijsolstr.2015.11.018.
  • Wu, Y., Thompson, E., and Heyliger, P., 2003. The compaction of aggregates of non-spherical linear viscous particles. Computer Methods in Applied Mechanics and Engineering, 192 (44-46), 4929–4946. doi:10.1016/S0045-7825(03)00398-0.
  • Yang, Y., 2017. Research on compaction mechanism of thermosetting epoxy asphalt mixture for steel deck pavement. Doctoral dissertation. Southeast University.
  • Yasuda, K., Takase, F., and Matsuo, Y., 2013. Stochastic analysis on coordination number distribution of particles during powder compaction. Advanced Powder Technology, 24 (5), 871–878. doi:10.1016/j.apt.2013.05.002.
  • Zhang, X., et al., 2020. Dynamic characteristics of coarse aggregates within epoxy asphalt mixture during Superpave Gyratory Compaction. Journal of Testing and Evaluation, 48 (6), 20180723. doi:10.1520/JTE2011-EB10.1520/JTE20180723.
  • Zhang, D., et al., 2022. Experimental and numerical analysis on mesoscale mechanical behavior of coarse aggregates in the asphalt mixture during gyratory compaction. Processes, 10 (1), 47. doi:10.3390/pr10010047.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.