224
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Study on the effect and mechanism of oyster shell powder on asphalt

ORCID Icon, &
Article: 2176496 | Received 17 Oct 2022, Accepted 09 Jan 2023, Published online: 24 Feb 2023

References

  • Bai, Ruonan, et al., 2016. Estimating frame bulk and shear moduli of two double porosity layers by ultrasound transmission. Ultrasonics 70, 211–220. doi:10.1016/j.ultras.2016.05.004.
  • Cha, Xudong, Chen, Wu, and Li, Ping, 2011. Research on water sensitivity of asphalt mortar based on dynamic shear rheological test. Chinese and Foreign Highway, (02), 203–208. doi:10.14048/j.issn.1671-2579.2011.02027.
  • Chen, Haiyan, et al., 2022. Sustainable mixtures using waste oyster shell powder and slag instead of cement: performance and multi-objective optimization design. Construction and Building Materials 348, 128642. doi:10.1016/J.CONBUILDMAT.2022.128642.
  • Chen, Wuxing, Chen, Shuang, and Zheng, Chuanfeng, 2021. Analysis of micromechanical properties of algae biobasedbio-asphalt-mineral interface based on molecular simulation technology. Construction and Building Materials 306. doi:10.1016/J.CONBUILDMAT.2021.124888.
  • Chen, Song, Pei, Xiaoguang, and Han, Ling, 2018. The correlation analysis of SBS modified asphalt microstructure and road performance. Chemist, (04), 82–85. doi:10.16247/j.cnki.23-1171/tq.20180482.
  • Cui, Wentian, et al., 2022. Study on the interfacial contact behavior of carbon nanotubes and asphalt binders and adhesion energy of modified asphalt on aggregate surface by using molecular dynamics simulation. Construction and Building Materials. doi:10.1016/J.CONBUILDMAT.2022.125849.
  • de Alvarenga, Rodrigo Augusto Freitas, et al., 2012. The recycling of oyster shells: An environmental analysis using life cycle assessment. Journal of Environmental Management 106, 102–109. doi:10.1016/j.jenvman.2012.04.017.
  • Feng, Xue, et al., 2022. Shell water-soluble matrix protein from oyster shells promoted proliferation, differentiation and mineralization of osteoblasts in vitro and vivo. International Journal of Biological Macromolecules 201, 288–297. doi:10.1016/J.IJBIOMAC.2021.12.168.
  • Jiao, Bozong, Pan, Baofeng, and Che, Tiankai, 2022. Evaluating impacts of desulfurization and depolymerization on t-hermodynamics properties of crumb rubber modified asphalt through molecular dynamics simulation. Construction and Building Materials 323, 126360. doi:10.1016/J.CONBUILDMAT.2022.126360.
  • Kong, Jiafeng, et al., 2022. Impacts from waste oyster shell on the durability and biological attachment of recycled aggregate porous concrete for artificial reef. Materals, 15(17), 6117. doi:10.3390/MA15176117.
  • Le, Shi, et al., 2022. The evolution of the construction waste recycling system and the willingness to use recycled products in China. Sustainability, 14(19), 12541. doi:10.3390/SU141912541.
  • Li, Gengying, et al., 2015. Properties of cement-based bricks with oyster shells ash. Journal of Cleaner Production 91, 279–287. doi:10.1016/j.jclepro.2014.12.023.
  • Lin, Xianfu, 2020. Rubber modified road asphalt and its microstructure. Synthetic Rubber Industry, 23 (3), 196–199. doi:10.1088/1755-1315/324/1/012035.
  • Lu, Hongxu, 2022. Highly effective peptide-calcium chelate prepared from aquatic products processing wastes: stickwater and oyster shells. LWT. doi:10.1016/J.LWT.2022.113947.
  • Morrison, G. R., and Hesp, S. A. M., 2015. A new look at rubber-modified asphalt binders. Journal of Materials Science (10). doi:10.1007/BF00362138.
  • Naqi, Ali, et al., 2020. Examining the potential of calcined oyster shell waste as additive in high volume slag cement. Construction and Building Materials(C) 230, 116973. doi:10.1016/j.conbuildmat.2019.116973.
  • Ren, Shisong, 2021. Chemo-physical characterization and molecular dynamics simulation of long-term aging behaviors of bitumen. Construction and Building Materials 302, 124437. doi:10.1016/J.CONBUILDMAT.2021.124437.
  • Ren, Shisong, et al., 2021. Multi-scale characterization of lignin modified bitumen using experimental and molecular dynamics simulation methods. Construction and Building Materials 287, 123058. doi:10.1016/J.CONBUILDMAT.2021.123058.
  • Song, Jiale, et al., 2015. Exploring the aging mechanism of SBS modified asphalt RTFOT based on chemical titration. Chinese and Foreign Highways, (04), 269–272. doi:10.14048/j.issn.1671-2579.2015.04.062.
  • Song, Liang, et al., 2021. SBS/rubber powder composite modified asphalt research progress and performance evaluation. Chinese Journal of Highways, (10), 17–33. doi:10.19721/j.cnki.1001-7372.2021.10.002.
  • Uddin, Mohammad J., Smith Kelly, J., and Hargis Craig, W., 2021. Development of pervious oyster shell habitat (POSH) concrete for reef restoration and living shorelines. Construction and Building Materials 295, 123685. doi:10.1016/J.CONBUILDMAT.2021.123685.
  • Wang, Zhiqiang, et al., 2022. Recycling of waste oyster shell and recycled aggregate in the porous ecological concrete used for artificial reefs. Construction and Building Materials 323, 126447. doi:10.1016/J.CONBUILDMAT.2022.126447.
  • Wang, Shuiyin, Guo, Chaoyang, and Peng, Feng, 2010. Modification mechanism of crumb rubber asphalt. Journal of Chang'an University (Natural Science Edition). doi:10.19721/j.cnki.1671-8879.2010.04.007.
  • Wang, Li, and Liang, Hao, 2017. Superthermal aging mechanism and fatigue properties of SBS modified asphalt. Polymer Materials Science and Engineering, (04). doi:10.16865/j.cnki.1000-7555.2017.04.014.
  • Wei, Yu-Ling, et al., 2018. Co-sintering oyster shell with hazardous steel fly ash and harbor sediment into construction materials. Construction and Building Materials 172, 224–232. doi:10.1016/j.conbuildmat.2018.03.242.
  • Wu, Shaopeng, 2017. Study on the modification mechanism of rubber asphalt. Journal of Wuhan University of Technology, 19 (3), 7–10. doi:10.1061/MT.1988-5512.0004125.
  • Xiao, Qingyi, Li, Zhengzhong, and Zhu, Junhui, 2018. Effect of waste oil regeneration agent on performance of recycled asphalt mixture with high old material content. Journal of Wuhan University (Engineering Edition), (11). doi:10.14188/j.1671-8844.2018-11-008.
  • Xie, Xiangbing, 2020. Evaluation of UV aging resistance of nano-TiO2 synergistic nano-ZnO / SBS composite modified asphalt. Silicate Notification, (07), 2354–2361. doi:10.16552/j.cnki.issn1001-1625.2020.07.047.
  • Yang, Eun-Ik, et al., 2009. Effect of partial replacement of sand with dry oyster shell on the long-term performance of concrete. Construction and Building Materials 24(5), 758–765. doi:10.1016/j.conbuildmat.2009.10.032.
  • Yang, Guang, et al., 2015. The performance and modification mechanism of rubber powder and SBS composite modified asphalt mixture in seasonal frozen area. Journal of Chang'an University (Natural Science Edition), (06). doi:10.19721/j.cnki.1671-8879.2015.06.002.
  • Yang, Xiaofei, et al., 2022. Effects of oyster shell powder on leaching characteristics of nutrients in low-fertility latosol in South China. Environmental Science and Pollution Research International,(37). doi:10.1007/S11356-022-19911-7.
  • Ye, Fen, 2015. Analysis and countermeasure research on the influence of ultraviolet light aging on asphalt performance. Shanghai: School of transportation engineering, Tongji University. doi:10.1088/1716-1723/324/1/012031.
  • Yu, Qi, et al., 2022. Impacts from waste oyster shell on the durability and biological attachment of recycled aggregate porous concrete for artificial reef. Materials, 15(17), 6117. doi:10.3390/MA15176117.
  • Zhang, Zhiqing, 2017. Micro mechanism analysis of diatomite modified asphalt. Journal of Beijing Xiaye University, 33 (9), 943–946. doi:10.1007/s12182-020-00426-0.
  • Zhang, Dengliang, 2018. Mechanism and application of modified asphalt. Petroleum Asphalt, 17 (2), 36–38. doi:10.16570/j.cnki.issn1673-6850.2018.02.009.
  • Zhang, Xiaoning, Yin, Yingmei, and Zou, Guilian, 2010. Viscoelastic properties of asphalt mixtures with different void ratios. Chinese Journal of Highways, (04), 1–7. doi:10.19721/j.cnki.1001-7372.2010.04.001.
  • Zhang, Zhengqi, and Zhang, Dengliang, 2016. Study on polyethylene modified asphalt. Journal of China Highway, (03). doi:10.19721/j.cnki.1001-7372.2016.03.003.
  • Zhao, Juan, et al., 2022. Strength enhancement of pumice-based geopolymer paste by incorporating recycled concrete and calcined oystershell powders. Case Studies in Construction Materials 17, e01307. doi:10.1016/J.CSCM.2022.E01307.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.