370
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Automated pothole condition assessment in pavement using photogrammetry-assisted convolutional neural network

, ORCID Icon & ORCID Icon
Article: 2183401 | Received 07 Jul 2022, Accepted 17 Feb 2023, Published online: 06 Mar 2023

References

  • “Agisoft Metashape Professional edition: Agisoft LLC software”, 2021. Retrieved from : http://www.agisoft.com/downloads/installer/.
  • Ali, R., et al., 2022. Structural crack detection using deep convolutional neural networks. Automation in Construction, 133, Elsevier B.V. doi: 10.1016/j.autcon.2021.103989.
  • Alqaydi, S., et al. 2021. Using smart phones to assessment road roughness in the UAE. In Proceedings of the 11th Annual International Conference on Industrial Engineering and Operations Management, Singapore, pp. 7-11.
  • Arjapure, S., and Kalbande, D. R., 2021. Deep learning model for pothole detection and area computation, In 2021 International Conference on Communication information and Computing Technology (ICCICT), pp. 1–6.
  • Arya, D., et al., 2021. Rdd2020: An image dataset for smartphone-based road damage detection and classification, Mendeley Data, 2021. https://data.mendeley.com/datasets/5ty2wb6gvg/1 (accessed Dec. 02, 2022).
  • Banharnsakun, A., Apr. 2017. Hybrid ABC-ANN for pavement surface distress detection and classification. International Journal of Machine Learning and Cybernetics, 8 (2), 699–710. doi:10.1007/s13042-015-0471-1
  • Barbosh, M., Dunphy, K., and Sadhu, A., 2022. Acoustic emission-based damage localization using wavelet-assisted deep learning. Journal of Infrastructure Preservation and Resilience, 3 (1), 6. doi:10.1186/s43065-022-00051-8.
  • Cao, W., Liu, Q., and He, Z., 2020. Review of pavement defect detection methods. IEEE Access, 8, 14531–14544. doi: 10.1109/aCCESS.2020.2966881.
  • Chen, H., Yao, M., and Gu, Q., 2020. Pothole detection using location-aware convolutional neural networks. International Journal of Machine Learning and Cybernetics, 11 (4), 899–911. doi:10.1007/s13042-020-01078-7
  • de Blasiis, M. R., di Benedetto, A., and Fiani, M., 2020. Mobile laser scanning data for the evaluation of pavement surface distress. Remote Sensing, 12 (6). doi:10.3390/rs12060942
  • Deeksha, Arya, et al., 2020. Global road damage detection: state-of-the-art solutions. In: Proceedings - 2020 IEEE International Conference on Big Data, Big Data 2020.
  • Deeksha, Arya, et al., 2021. Deep learning-based road damage detection and classification for multiple countries. Automation in Construction, 132.
  • Dejin, Zhang, et al., 2018. Automatic pavement defect detection using 3D laser profiling technology. Automation in Construction, 96, 350–365. doi:10.1016/j.autcon.2018.09.019
  • Dib, J., Sirlantzis, K., and Howells, G., 2020. A review on negative road anomaly detection methods. IEEE Access, 8, 57298–57316. doi:10.1109/ACCESS.2020.2982220
  • Du, Z., et al., 2021. Application of image technology on pavement distress detection: A review. Measurement (Lond), 184.
  • Everingham, M., van Gool, L., and Williams, C. K. I., 2010. The pascal visual object classes (VOC) challenge. International Journal of Computer Vision, 88, 303–338. doi:10.1007/s11263-009-0275-4
  • Fan, R., et al., 2020. Pothole detection based on disparity transformation and road surface modeling. IEEE Transactions on Image Processing, 29, 897–908. doi:10.1109/TIP.2019.2933750
  • Foley, J. D., Fischler, M. A., and Bolles, R. C., 1981. Graphics and image processing random sample consensus: a paradigm for model fitting with Apphcatlons to image analysis and automated cartography.
  • Gao, M., et al., 2020. Detection and segmentation of cement concrete pavement pothole based on image processing technology. Mathematical Problems in Engineering, 2020.
  • Gerard, Salton, and Michael, McGill, 1983. Introduction to modern information retrieval. New York: McGraw-Hill.
  • Ha, J., Park, K., and Kim, M., 2021. A development of road crack detection system using deep learning-based segmentation and object detection. The Journal of Society for e-Business Studies, 26 (1), 93–106.
  • He, K., et al., 2015. Deep residual learning for image recognition, [Online]. Available: http://arxiv.org/abs/1512.03385.
  • Hegde, V., et al., 2020. Yet another deep learning approach for road damage detection using ensemble learning. In: Proceedings - 2020 IEEE International Conference on Big Data, Big Data 2020, pp. 5553–5558. doi:10.1109/BigData50022.2020.9377833.
  • Huidrom, L., Das, L. K., and Sud, S. K., 2013. Method for automated assessment of potholes, cracks and patches from road surface video clips. Procedia - Social and Behavioral Sciences, 104, 312–321. doi:10.1016/j.sbspro.2013.11.124
  • Kanta Sunni, Kushwaha Prasad, 2018. 3D documentation and condition assessment of surface and subsurface of engineering structures LiDAR Data acquisition and processing view project forest above ground biomass assesment using LiDAR and SAR View project.
  • Khurram, Kamal, et al., 2018. Performance assessment of Kinect as a sensor for pothole imaging and metrology. International Journal of Pavement Engineering, 19 (7), 565–576. doi:10.1080/10298436.2016.1187730
  • Kim, M. K., Wang, Q., and Li, H., 2019. Non-contact sensing based geometric quality assessment of buildings and civil structures: A review. Automation in Construction, 100, Elsevier B.V., 163–179. doi:10.1016/j.autcon.2019.01.002
  • Kingma, D. P., and Ba, J., 2014. Adam: a method for stochastic optimization, [Online]. Available: http://arxiv.org/abs/1412.6980.
  • Koch, C., and Brilakis, I., 2011. Pothole detection in asphalt pavement images. Advanced Engineering Informatics, 25 (3), 507–515. doi:10.1016/j.aei.2011.01.002
  • Lekshmipathy, J., and Velayudhan, S. Pavement condition assessment using smartphone accelerometers pavement condition assessment view project urban pavement maintenance management system view project pavement condition assessment using smartphone accelerometers. doi:10.13140/RG.2.2.13820.46723
  • Lili, Pei, et al., 2022. Detecting potholes in asphalt pavement under small-sample conditions based on improved faster region-based convolution neural networks. Canadian Journal of Civil Engineering, 49 (2), 265–273. doi:10.1139/cjce-2020-0764
  • Lin, T.-Y., et al., 2018. Focal loss for dense object detection.
  • Maeda, H., et al., 2018. Road damage detection and classification using deep neural networks with smartphone images. Computer-Aided Civil and Infrastructure Engineering, 33 (12), 1127–1141. doi:10.1111/mice.12387
  • Maeda, H., et al., 2021. Generative adversarial network for road damage detection. Computer-Aided Civil and Infrastructure Engineering, 36 (1), 47–60. doi:10.1111/mice.12561
  • Mei, Q., and Gül, M., 2020. A cost effective solution for pavement crack inspection using cameras and deep neural networks. Construction and Building Materials, 256.
  • Miller, J. S., and Bellinger, W. Y., 2014. Distress identification manual for the long-term pavement performance Program.
  • Nguyen, S. D., Tran, T. S., and Tran, V. P., Apr. 2022. Deep learning-based crack detection: A survey. International Journal of Pavement Research and Technology.
  • Ochoa-Ruiz, G., et al., 2020. An asphalt damage dataset and detection system based on retinanet for road conditions assessment. Applied Sciences, 10 (11. doi:10.3390/app10113974
  • Pan, Y., et al., 2018. Detection of asphalt pavement potholes and cracks based on the unmanned aerial vehicle multispectral imagery. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 11 (10), 3701–3712. doi:10.1109/JSTARS.2018.2865528
  • Ranyal, E., Sadhu, A., and Jain, K., 2022. Road condition monitoring using smart sensing and artificial intelligence: A Review.
  • Ravi, R., Bullock, D., and Habib, A., 2020a. Highway and airport runway pavement inspection using mobile lidar. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives, XLIII-B1-2020 (B1), 349–354.
  • Ravi, R., Habib, A., and Bullock, D., 2020b. Pothole mapping and patching quantity estimates using lidar-based mobile mapping systems. Transportation Research Record: Journal of the Transportation Research Board, 2674 (9), 124–134. doi:10.1177/0361198120927006
  • Ryu, S. K., Kim, T., and Kim, Y. R., 2015. Image-Based pothole detection system for ITS service and road management system. Mathematical Problems in Engineering, 2015.
  • Sandamal, R. M. K., and Pasindu, H. R., 2022. Applicability of smartphone-based roughness data for rural road pavement condition evaluation. International Journal of Pavement Engineering, 23 (3), 663–672. doi:10.1080/10298436.2020.1765243
  • Sony, S., et al., 2021. A systematic review of convolutional neural network-based structural condition assessment techniques. Engineering Structures, 226, Elsevier Ltd. doi:10.1016/j.engstruct.2020.111347
  • Soviany, P., and Ionescu, R. T., 2018. Optimizing the trade-off between single-stage and Two-stage object detectors using image difficulty prediction, [Online]. Available: http://arxiv.org/abs/1803.08707.
  • Tedeschi, A., and Benedetto, F., Apr. 2017. A real-time automatic pavement crack and pothole recognition system for mobile Android-based devices. Advanced Engineering Informatics, 32, 11–25. doi:10.1016/j.aei.2016.12.004
  • Tzutalin, 2015. Labelimg graphical annotation tool, Git Code. https://github.com/tzutalin/labelImg.
  • van der Horst, B. B., Lindenbergh, R. C., and Puister, S. W. J., 2019. Mobile laser scan data for road surface damage detection. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 42 (2/W13), 1141–1148. doi:10.5194/isprs-archives-XLII-2-W13-1141-2019
  • Varona, B., Monteserin, A., and Teyseyre, A., 2020. A deep learning approach to automatic road surface monitoring and pothole detection. Personal and Ubiquitous Computing, 24 (4), 519–534. doi:10.1007/s00779-019-01234-z
  • Wenbo, Hu, et al., 2021. Machine vision-based surface crack analysis for transportation infrastructure. Automation in Construction, 132.
  • Yik, Y. K., et al., 2021. A real-time pothole detection based on deep learning approach. Journal of Physics: Conference Series, 1828 (1).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.