206
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Fast and accurate semantic segmentation of road crack video in a complex dynamic environment

, , , , , , , , & show all
Article: 2219366 | Received 16 Feb 2023, Accepted 22 May 2023, Published online: 28 Jun 2023

References

  • Ai, D., et al., 2020. Automatic pixel-wise detection of evolving cracks on rock surface in video data. Automation in Construction, 119, 103378. doi:10.1016/j.autcon.2020.103378
  • Amhaz, R., et al., 2016. Automatic crack detection on two-dimensional pavement images: An algorithm based on minimal path selection. IEEE Transactions on Intelligent Transportation Systems, 17 (10), 2718–2729. doi:10.1109/TITS.2015.2477675
  • Badrinarayanan, V, Kendall, A and Cipolla, R, 2017. Segnet: A deep convolutional encoder-decoder architecture for image segmentation. IEEE transactions on pattern analysis and machine intelligence, 39, 2481–2495.
  • Bang, S., et al., 2019. Encoder-decoder network for pixel-level road crack detection in black-box images. Computer-Aided Civil and Infrastructure Engineering, 19, 6503405.
  • Cha, Y. J., Choi, W., and Büyüköztürk, O, 2017. Deep learning-based crack damage detection using convolutional neural networks. Computer-Aided Civil and Infrastructure Engineering, 32 (5), 361–378. doi:10.1111/mice.12263
  • Chen, L. C., et al., 2018. Deeplab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE Transactions on Pattern Analysis and Machine Intelligence, 40 (4), 834–848. doi:10.1109/TPAMI.2017.2699184
  • Chen, Q., et al., 2021. Curve-based crack detection using crack information gain. Structural Control and Health Monitoring, 28 (8), e2764. doi:10.1002/stc.2764
  • Chen, F. C., and Jahanshahi, R, 2018. Nb-cnn: deep learning-based crack detection using convolutional neural network and naïve Bayes data fusion. IEEE Transactions on Industrial Electronics, 65 (99), 4392–4400. doi:10.1109/TIE.2017.2764844
  • Chen, F. C., and Jahanshahi, M. R, 2019. Real-time crack detection from nuclear inspection videos using fully convolutional network and parametric data fusion. IEEE Transactions on Instrumentation and Measurement, 5325–5334.
  • Cheng, Y., et al., 2016. A magnetic domain spots filtering method with self-adapting threshold value selecting for crack detection based on the moi. Nonlinear Dynamics, 86 (2), 741–750. doi:10.1007/s11071-016-2918-7
  • Choi, W., and Cha, Y. J, 2019. Sddnet: real-time crack segmentation. IEEE Transactions on Industrial Electronics, 99, 1–1.
  • Darragh, O ‘Brien, et al., 2023. Automated crack classification for the CERN underground tunnel infrastructure using deep learning. Tunnelling and Underground Space Technology, 131, 104668. doi:10.1016/j.tust.2022.104668
  • Das, S., Biswas, S. K., and Purkayastha, B, 2023. A deep sign language recognition system for Indian sign language. Neural Computing and Applications, 35 (2), 1469–1481. doi:10.1007/s00521-022-07840-y
  • Ding, X., et al., 2021. Diverse branch block: building a convolution as an inception-like unit. IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 10881–10890.
  • Du, Y., et al., 2020. Pavement distress detection and classification based on YOLO network. International Journal of Pavement Engineering, 22 (13), 1659–1672.
  • Fei, Y., et al., 2019. Pixel-level cracking detection on 3d asphalt pavement images through deep-learning-based cracknet-v. IEEE Transactions on Intelligent Transportation Systems, 21 (1), 273–284.
  • Guan, J., et al., 2021. Automated pixel-level pavement distress detection based on stereo vision and deep learning. Automation in Construction, 129, 103788. doi:10.1016/j.autcon.2021.103788
  • Hassan, S.I., Dang, L.M., Mehmood, I., et al., 2019. Underground sewer pipe condition assessment based on convolutional neural networks. Automation in Construction, 106, 102849. doi:10.1016/j.autcon.2019.102849
  • He, K., et al., 2015. Spatial pyramid pooling in deep convolutional networks for visual recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 37 (9), 1904–1916. doi:10.1109/TPAMI.2015.2389824
  • Hoang, N. D., Nguyen, Q. L., and Tran, V. D, 2018. Automatic recognition of asphalt pavement cracks using metaheuristic optimized edge detection algorithms and convolution neural network. Automation in Construction, 94, 203–213. doi:10.1016/j.autcon.2018.07.008
  • Hou, Y., et al., 2021. The state-of-the-art review on applications of intrusive sensing, image processing techniques, and machine learning methods in pavement monitoring and analysis. Engineering, 7 (6), 12.
  • Huang, G., et al., 2017. Densely connected convolutional networks. 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2261–2269. doi:10.1109/CVPR.2017.243
  • Jha, D., et al., 2019. ResUNet++: An advanced architecture for medical image segmentation. 2019 IEEE International Symposium on Multimedia (ISM), 225–2255. doi:10.1109/ISM46123.2019.00049
  • Jin, H., et al., 2022. Network video summarization based on key frame extraction via superpixel segmentation. Transactions on Emerging Telecommunications Technologies, 33 (6), e3940.
  • Jy, A., et al., 2021. Concrete crack segmentation based on UAV-enabled edge computing. Neurocomputing, 485, 233–241.
  • Kamdi, S., and Krishna, R. K, 2012. Image segmentation and region growing algorithm. International Journal of Computer Technology & Electronics Engineering, 2 (1), 103–107.
  • Koch, C., et al., 2015. A review on computer vision based defect detection and condition assessment of concrete and asphalt civil infrastructure. Advanced Engineering Informatics, 29 (2), 196–210. doi:10.1016/j.aei.2015.01.008.
  • Lee, Y., et al., 2019. An energy and GPU-computation efficient backbone network for real-time object detection. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), 752–760. doi:10.1109/CVPRW.2019.00103
  • Li, L., et al., 2018. A method of detecting the cracks of concrete undergo high-temperature. Construction and Building Materials, 162, 345–358. doi:10.1016/j.conbuildmat.2017.12.010
  • Li, G., et al., 2020. Automatic recognition and analysis system of asphalt pavement cracks using interleaved low-rank group convolution hybrid deep network and SegNet fusing dense condition random field. Measurement, 170, 108693–108710.
  • Li, Y., et al., 2021. EACNet: enhanced asymmetric convolution for real-time semantic segmentation. IEEE Signal Processing Letters, 28, 234–238. doi:10.1109/LSP.2021.3051845
  • Li, S., Cao, Y., and Cai, H, 2017a. Automatic pavement-crack detection and segmentation based on steerable matched filtering and an active contour model. Journal of Computing in Civil Engineering, 31 (5), 04017045. doi:10.1061/(ASCE)CP.1943-5487.0000695
  • Li, X., Zhao, B., and Lu, X, 2017b. Key frame extraction in the summary space. IEEE Transactions on Cybernetics, 48 (6), 1923–1934. doi:10.1109/TCYB.2017.2718579
  • Liu, Y., et al., 2019a. Deepcrack: a deep hierarchical feature learning architecture for crack segmentation. Neurocomputing, 338 (21), 139–153. doi:10.1016/j.neucom.2019.01.036
  • Liu, Z., et al., 2019b. Computer vision-based concrete crack detection using U-net fully convolutional networks. Automation in Construction, 104, 129–139. doi:10.1016/j.autcon.2019.04.005
  • Liu, F., and Wang, L, 2022. UNet-based model for crack detection integrating visual explanations. Construction and Building Materials, 322, 126265. -. doi:10.1016/j.conbuildmat.2021.126265
  • Long, J., Shelhamer, E., and Darrell, T, 2015. Fully convolutional networks for semantic segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 39 (4), 640–651.
  • Lopez, D. E., et al., 2020. Semantic segmentation model for crack images from concrete bridges for mobile devices. Proceedings of the Institution of Mechanical Engineers, Part O: Journal of Risk and Reliability, 236 (4), 570–583. doi:10.1177/1748006X20965111
  • Maeda, H., et al., 2018. Road damage detection and classification using deep neural networks with smartphone images. Computer-Aided Civil and Infrastructure Engineering, 33, 1127. doi:10.1111/mice.12387
  • Medina, R., et al., 2015. Enhanced automatic detection of road surface cracks by combining 2D/3D image processing techniques. EEE International Conference on Image Processing, 778–782.
  • Mei, Q., and Gül, M., 2020. Multi-level feature fusion in densely connected deep-learning architecture and depth-first search for crack segmentation on images collected with smartphones. Structural Health Monitoring, 147592171989681.
  • Mei, Q., Gül, M., and Azim, M. R, 2020. Densely connected deep neural network considering connectivity of pixels for automatic crack detection. Automation in Construction, 110, 103018. doi:10.1016/j.autcon.2019.103018
  • Narges, K., and Vida, M, 2022. A critical review and comparative study on image segmentation-based techniques for pavement crack detection. Construction and Building Materials, 321.
  • Nguyen, T. S., et al., 2011. Free-form anisotropy: A new method for crack detection on pavement surface images. 18th IEEE International Conference on Image Processing, 2011, 1069–1072.
  • Nima, Safaei, et al., 2021. Efficient road crack detection based on an adaptive pixel-level segmentation algorithm. Transportation Research Record: Journal of the Transportation Research Board, 2675 (9), 370–381.
  • Oliveira, H., and Correia, P. L, 2013. Automatic road crack detection and characterization. IEEE Transactions on Intelligent Transportation Systems, 14 (1), 155–168. doi:10.1109/TITS.2012.2208630
  • Pan, Y., Zhang, G., and Zhang, L, 2020. A spatial-channel hierarchical deep learning network for pixel-level automated crack detection. Automation in Construction, 119, 103357. doi:10.1016/j.autcon.2020.103357
  • Pang, J., Zhang, H., Zhao, H., et al., 2022. Dcsnet: a real-time deep network for crack segmentation. Signal, Image and Video Processing, 16, 911–919. doi:10.1007/s11760-021-02034-w
  • Ren, Y., et al., 2020. Image-based concrete crack detection in tunnels using deep fully convolutional networks. Construction and Building Materials, 234, 117367. doi:10.1016/j.conbuildmat.2019.117367
  • Ronneberger, O., Fischer, P., and Brox, T., 2015. U-Net: convolutional networks for biomedical image segmentation. Medical Image Computing and Computer-Assisted Intervention (MICCAI), 234–241.
  • Samvit, J., Xin, W., and Joseph, E. G, 2019. Accel: A corrective fusion network for efficient semantic segmentation on video. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 8866–8875.
  • Sattar, D., Thomas, R. J., and Marc, M, 2018. Comparison of deep convolutional neural networks and edge detectors for image-based crack detection in concrete. Construction and Building Materials, 186, 1031–1045. doi:10.1016/j.conbuildmat.2018.08.011
  • Shen, Y., et al., 2022. Fast and accurate multi-class geospatial object detection with large-size remote sensing imagery using CNN and truncated NMS. ISPRS Journal of Photogrammetry and Remote Sensing, 191, 235–249. doi:10.1016/j.isprsjprs.2022.07.019
  • Steckenrider, J. J., and Furukawa, T, 2020. A probabilistic superpixel-based method for road crack network detection. Science and Information Conference, 303–316.
  • Tang, F., et al., 2021. Quantitative analysis and visual presentation of segregation in asphalt mixture based on image processing and bim. Automation in Construction, 121, 103461. doi:10.1016/j.autcon.2020.103461
  • Wang, Y., et al., 2020. RENet: rectangular convolution pyramid and edge enhancement network for salient object detection of pavement cracks. Measurement. 108698.
  • Wang, J. J., et al., 2022b. Deep convolutional neural networks for semantic segmentation of cracks. Struct Control Health Monit, 29 (1-18), e2850.
  • Wang, J., et al., 2022. An improved smart key frame extraction algorithm for vehicle target recognition. Computers & Electrical Engineering, 97, 107540. doi:10.1016/j.compeleceng.2021.107540
  • Wang, L. B., Li, R., Zhang, C., et al., 2022a. UNetformer: A UNet-like transformer for efficient semantic segmentation of remote sensing urban scene imagery. ISPRS Journal of Photogrammetry and Remote Sensing, 190, 196–214. doi:10.1016/j.isprsjprs.2022.06.008
  • Wang, W., and Su, C, 2021. Deep learning-based real-time crack segmentation for pavement images. KSCE Journal of Civil Engineering, 25 (12), 4495–4506. doi:10.1007/s12205-021-0474-2
  • Xu, S, et al., 2022. Concrete crack segmentation based on convolution–deconvolution feature fusion with holistically nested networks. Structural Control and Health Monitoring, 29 (8), 2965.
  • Yan, W. Y., and Yuan, X.-X, 2017. A low-cost video-based pavement distress screening system for low-volume roads. Journal of Intelligent Transportation Systems, 22 (5), 376–389.
  • Yang, F., et al., 2019. Feature pyramid and hierarchical boosting network for pavement crack detection. IEEE Transactions on Intelligent Transportation Systems, 99, 1–11.
  • Yang, L., et al., 2021. SimAM: a simple, parameter-free attention module for convolutional neural networks. In: International Conference on Machine Learning. PMLR, 11863–11874.
  • Yong, S., et al., 2016. Automatic road crack detection using random structured forests. IEEE Transactions on Intelligent Transportation Systems, 17 (12), 3434–3445. doi:10.1109/TITS.2016.2552248
  • Zagoruyko, S., and Komodakis, N., 2016. Wide residual networks. arXiv: 1605.07146.
  • Zhang, L, et al., 2016. Road crack detection using deep convolutional neural network. 2016 IEEE International Conference on Image Processing (ICIP), 3708–3712. doi:10.1109/ICIP.2016.7533052
  • Zhang, A., et al., 2019a. Automated pixel-level pavement crack detection on 3d asphalt surfaces with a recurrent neural network. Computer-Aided Civil and Infrastructure Engineering, 34 (3), 213–229. doi:10.1111/mice.12409
  • Zhang, Y, et al., 2019b. Scattering key-frame extraction for comprehensive videosar summarization: a spatiotemporal background subtraction perspective. IEEE Transactions on Instrumentation and Measurement, 69 (7), 4768–4784. doi:10.1109/TIM.2019.2953435
  • Zhang, Z., Liu, Q., and Wang, Y, 2017. Road extraction by deep residual U-net. IEEE Geoscience and Remote Sensing Letters, 99, 1–5.
  • Zheng, X., et al., 2020. Parsing very high resolution urban scene images by learning deep ConvNets with edge-aware loss. ISPRS Journal of Photogrammetry and Remote Sensing, 170, 15–28. doi:10.1016/j.isprsjprs.2020.09.019
  • Zou, Q., et al., 2012. Cracktree: automatic crack detection from pavement images. Pattern Recognition Letters, 33 (3), 227–238. doi:10.1016/j.patrec.2011.11.004
  • Zuo, X., et al., 2020. Classifying cracks at sub-class level in closed circuit television sewer inspection videos. Automation in Construction, 118, 103289. doi:10.1016/j.autcon.2020.103289

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.