114
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Coal-biomass fly ash as cement replacement in loess stabilisation for road materials

, ORCID Icon, , & ORCID Icon
Article: 2296956 | Received 25 Aug 2023, Accepted 08 Dec 2023, Published online: 27 Dec 2023

References

  • Abrams, D.A., 1998. Design of concrete mixtures. Chicago: Bulletin-Structural Materials Research Laboratory. Lewis Institute.
  • Alsafi, S., et al., 2017. Collapsibility potential of gypseous soil stabilized with fly ash geopolymer. characterization and assessment. Construction and Building Materials, 137, 390–409. doi:10.1016/j.conbuildmat.2017.01.079.
  • Arulrajah, A., et al., 2013. Geotechnical and geoenvironmental properties of recycled construction and demolition materials in pavement subbase applications. Journal of Materials in Civil Engineering, 25 (8), 1077–1088. doi:10.1061/(ASCE)MT.1943-5533.0000652.
  • Arulrajah, A., et al., 2017. Cement kiln dust and fly ash blends as an alternative binder for the stabilization of demolition aggregates. Construction and Building Materials, 145, 218–225. doi:10.1016/j.conbuildmat.2017.04.007.
  • ASTM, 2000. Standard test method for compressive strength of molded soil-cement cylinders. West Conshohocken, PA, USA: ASTM D1633, American Society for Testing and Materials. doi:10.1520/D1633-17.
  • ASTM, 2004a. Standard test methods for particle-size distribution (gradation) of soils using sieve analysis. West Conshohocken, PA, USA: ASTM D6913, American Society for Testing and Materials. doi:10.1520/D6913-04R09E01.
  • ASTM, 2004b. Standard test methods for one-dimensional consolidation properties of soils using incremental loading. West Conshohocken, PA, USA: ASTM D2435, American Society for Testing and Materials. doi:10.1520/D2435-04.
  • ASTM, 2012. Standard test methods for laboratory compaction characteristics of soil using standard effort (12 400 ft-lbf/ft3 (600 kn-m/m3)). West Conshohocken, PA, USA: ASTM D698, American Society for Testing and Materials. doi:10.1520/D0698-12R21.
  • ASTM, 2014. Standard test methods for specific gravity of soil solids by water pycnometer. West Conshohocken, PA, USA: ASTM D854, American Society for Testing and Materials. doi:10.1520/D0854-14.
  • ASTM, 2017a. Standard practice for making and curing soil-cement compression and flexure test specimens in the laboratory. West Conshohocken, PA, USA: ASTM D1632, American Society for Testing and Materials. doi:10.1520/D1632-17E01.
  • ASTM, 2017b. Standard practice for classification of soils for engineering purposes (unified soil classification system). West Conshohocken, PA, USA: ASTM D2487, American Society for Testing and Materials. doi:10.1520/D2487-17.
  • ASTM, 2022. Standard specification for coal fly ash and raw or calcined natural pozzolan for use in concrete. West Conshohocken, PA, USA: ASTM C618, American Society for Testing and Materials. doi:10.1520/C0618-22.
  • Berra, M., Mangialardi, T., and Paolini, A.E., 2015. Reuse of woody biomass fly ash in cement-based materials. Construction and Building Materials, 76, 286–296. doi:10.1016/j.conbuildmat.2014.11.052.
  • Cabalar, A.F., Abdulnafaa, M.D., and Isbuga, V., 2021. Plate loading tests on clay with construction and demolition materials. Arabian Journal for Science and Engineering, 46, 4307–4317. doi:10.1007/s13369-020-04916-6.
  • Cabalar, A.F. and Karabash, Z., 2019. Influence of cement type and sample preparation on the small-strain behaviour of sands. Arabian Journal for Science and Engineering, 44, 8835–8848. doi:10.1007/s13369-019-04070-8.
  • Chew, S.H., Kamaruzzaman, A.H.M., and Lee, F.H., 2004. Physicochemical and engineering behavior of cement treated clays. Journal of Geotechnical Geoenvironmental Engineering, 130 (7), 696–706. doi:10.1061/(ASCE)1090-0241(2004)130:7(696).
  • Chindaprasirt, P., et al., 2019. Fluidized bed coal-bark fly ash geopolymer with additives cured at ambient temperature. International Journal of GEOMATE, 16 (54), 29–35. doi:10.21660/2019.54.4654.
  • Chindaprasirt, P., et al., 2020. Engineering characteristics of Khon Kaen loess as construction material. Lowland Technology International Journal, 22 (2), 228–238. doi:10.0001/ialt_lti.v22i2,%20Septemb.665.
  • Chindaprasirt, P., et al., 2021. Role of fly ash on strength properties of rejuvenated soil cement for pavement materials. Civil and Environmental Engineering, 17 (2), 583–596. doi:10.2478/cee-2021-0059.
  • DOH, 2021a. Standard of soil cement subbase. Standard No. DH-S 206/2021. Bangkok, Thailand: Department of Highways.
  • DOH, 2021b. Standard of soil cement base. Standard No. DH-S 204/2556. Bangkok, Thailand: Department of Highways.
  • Gabrijel, I., Skazlić, M., and Štirmer, N., 2022. Long-term behavior of concrete containing wood biomass fly ash. Applied Sciences, 12 (24), 12859. doi:10.3390/app122412859.
  • Horpibulsuk, S., et al., 2006. Strength development in cement stabilized low plasticity and coarse grained soils: laboratory and field study. Soils and Foundations, 46 (3), 351–366. doi:10.3208/sandf.46.351.
  • Horpibulsuk, S., et al., 2010a. Analysis of strength development in cement-stabilized silty clay from microstructural considerations. Construction and Building Materials, 24 (10), 2011–2021. doi:10.1016/j.conbuildmat.2010.03.011.
  • Horpibulsuk, S., et al., 2010b. Behaviour of cemented clay simulated via the theoretical framework of the structured cam clay model. Computers and Geotechnics, 37 (1), 1–9. doi:10.1016/j.compgeo.2009.06.007.
  • Horpibulsuk, S., et al., 2012. Strength development in blended cement admixed saline clay. Applied Clay Science, 55, 44–52. doi:10.1016/j.clay.2011.10.003.
  • Horpibulsuk, S., et al., 2016. Durability against wetting–drying cycles of water treatment sludge–fly ash geopolymer and water treatment sludge–cement and silty clay–cement systems. Journal of Materials in Civil Engineering, 28 (1), 04015078. doi:10.1061/(ASCE)MT.1943-5533.0001351.
  • Horpibulsuk, S., Miura, N., and Bergado, D.T., 2004. Undrained shear behavior of cement admixed clay at high water content. Journal of Geotechnical and Geoenvironmental Engineering, 130 (10), 1096–1105. doi:10.1061/(ASCE)1090-0241(2004)130:10(1096).
  • Horpibulsuk, S., Rachan, R., and Raksachon, Y., 2009. Role of fly ash on strength and microstructure development in blended cement stabilized silty clay. Soils and Foundations, 49 (1), 85–98. doi:10.3208/sandf.49.85.
  • Horpibulsuk, S., Rachan, R., and Suddeepong, A., 2011. Assessment of strength development in blended cement admixed Bangkok clay. Construction and Building Materials, 25, 1521–1531. doi:10.1016/j.conbuildmat.2010.08.006.
  • Hossain, K.M.A., Lachemi, M., and Easa, S., 2007. Stabilized soils for construction applications incorporating natural resources of Papua New Guinea. Resources, Conservation and Recycling, 51 (4), 711–731. doi:10.1016/j.resconrec.2006.12.003.
  • Hoy, M., Horpibulsuk, S., and Arulrajah, A., 2016. Strength development of recycled asphalt pavement–fly ash geopolymer as a road construction material. Construction and Building Materials, 117, 209–219. doi:10.1016/j.conbuildmat.2016.04.136.
  • Iyaruk, A., Promputthangkoon, P., and Lukjan, A., 2022. Evaluating the performance of lateritic soil stabilized with cement and biomass bottom ash for use as pavement materials. Infrastructures, 7 (5), 66. doi:10.3390/infrastructures7050066.
  • Jiang, Y., et al., 2017. Influence of initial dry density and water content on the soil–water characteristic curve and suction stress of a reconstituted loess soil. Bulletin of Engineering Geology and the Environment, 76, 1085–1095. doi:10.1007/s10064-016-0899-x.
  • Jidrada, P., et al., 2016. Recycling of combined coal-biomass ash from electric power plant waste as a cementitious material: characteristics and improvement. Journal of Material Cycles and Waste Management, 18, 527–540. doi:10.1007/s10163-014-0349-4.
  • Kampala, A., et al., 2014. Influence of wet-dry cycles on compressive strength of calcium carbide residue–fly ash stabilized clay. Journal of Materials in Civil Engineering, 26 (4), 633–643. doi:10.1061/(ASCE)MT.1943-5533.0000853.
  • Kampala, A., et al., 2021. An investigation of sulfate effects on compaction characteristics and strength development of cement-treated sulfate bearing clay subgrade. Road Materials and Pavement Design, 22 (10), 2396–2409. doi:10.1080/14680629.2020.1753564.
  • Kamruzzaman, A.H.M., Chew, S.H., and Lee, F.H., 2009. Structuration and destructuration behavior of cement-treated Singapore marine clay. Journal of Geotechnical and Geoenvironmental Engineering, 135 (4), 573–589. doi:10.1061/(ASCE)1090-0241(2009)135:4(573).
  • Kolias, S., Kasselouri-Rigopoulou, V., and Karahalios, A., 2005. Stabilisation of clayey soils with high calcium fly ash and cement. Cement and Concrete Composites, 27 (2), 301–313. doi:10.1016/j.cemconcomp.2004.02.019.
  • Kumar, G. and Harika, S., 2021. Stabilization of expansive subgrade soil by using fly ash. Materials Today: Proceedings, 45 (7), 6558–6562. doi:10.1016/j.matpr.2020.11.469.
  • Li, N., et al., 2019. Compression characteristics and microscopic mechanism of coastal soil modified with cement and fly ash. Materials, 12 (19), 3182. doi:10.3390/ma12193182.
  • Lorenzo, G.A. and Bergado, D.T., 2006. Fundamental characteristics of cement-admixed clay in deep mixing. Journal of Materials in Civil Engineering, 18 (2), 161–174. doi:10.1061/(ASCE)0899-1561(2006)18:2(161).
  • Ma, F., Yang, J., and Bai, X., 2017. Water sensitivity and microstructure of compacted loess. Transportation Geotechnics, 11, 41–56. doi:10.1016/j.trgeo.2017.03.003.
  • Mcmanis, K.L. and Arman, A., 1989. Class C fly ash as a full or partial replacement for Portland cement or lime. Transportation Research Record, 1219. Available from: http://onlinepubs.trb.org/Onlinepubs/trr/1989/1219/1219-007.pdf.
  • Mengue, E., et al., 2017. Physicochemical and consolidation properties of compacted lateritic soil treated with cement. Soils and Foundations, 57, 60–79. doi:10.1016/j.sandf.2017.01.005.
  • Mohammadinia, A., et al., 2015. Laboratory evaluation of the use of cement-treated construction and demolition materials in pavement base and subbase applications. Journal of Materials in Civil Engineering, 27 (6), 04014186. doi:10.1061/(ASCE)MT.1943-5533.0001148.
  • Odeh, N.A. and Al-Rkaby, A.H., 2022. Strength, durability, and microstructures characterization of sustainable geopolymer improved clayey soil. Case Studies in Construction Materials, 16, e00988. doi:10.1016/j.cscm.2022.e00988.
  • Phien-wej, N., Pientong, T., and Balasubramaniam, A.S., 1992. Collapse and strength characteristics of loess in Thailand. Engineering Geology, 32 (1–2), 59–72. doi:10.1016/0013-7952(92)90018-T.
  • Rai, P., et al., 2021. Effect of fly ash and cement on the engineering characteristic of stabilized subgrade soil: an experimental study. Geofluids, 2021, 1–11. doi:10.1155/2021/1368194.
  • Shooshpasha, I. and Shirvani, R.A., 2015. Effect of cement stabilization on geotechnical properties of sandy soils. Geomechanics and Engineering, 8 (1), 17–31. doi:10.12989/gae.2015.8.1.017.
  • Suebsuk, J., et al., 2019. Strength prediction of cement-stabilised reclaimed asphalt pavement and lateritic soil blends. International Journal of Pavement Engineering, 20 (3), 332–338. doi:10.1080/10298436.2017.1293265.
  • Suebsuk, J., Suksan, A., and Horpibulsuk, S., 2014. Strength assessment of cement treated soil/reclaimed asphalt pavement (RAP) mixture. International Journal of GEOMATE, 6 (2), 878–884. doi:10.21660/2014.12.3262.
  • Tkaczewska, E. and Małolepszy, J., 2009. Hydration of coal–biomass fly ash cement. Construction and Building Materials, 23 (7), 2694–2700. doi:10.1016/j.conbuildmat.2008.12.018.
  • Tkaczewska, E., Mróz, R., and Łój, G., 2012. Coal–biomass fly ashes for cement production of CEM II/AV 42.5 R. Construction and Building Materials, 28 (1), 633–639. doi:10.1016/j.conbuildmat.2011.10.022.
  • Wang, S., et al., 2008a. Biomass fly ash in concrete: mixture proportioning and mechanical properties. Fuel, 87 (3), 365–371. doi:10.1016/j.fuel.2007.05.026.
  • Wang, S., Baxter, L., and Fonseca, F., 2008b. Biomass fly ash in concrete: SEM, EDX and ESEM analysis. Fuel, 87 (3), 372–379. doi:10.1016/j.fuel.2007.05.024.
  • Yoobanpot, N., Jamsawang, P., and Horpibulsuk, S., 2017. Strength behavior and microstructural characteristics of soft clay stabilized with cement kiln dust and fly ash residue. Applied Clay Science, 141, 146–156. doi:10.1016/j.clay.2017.02.028.
  • Zhang, F., et al., 2013. Undrained shear behavior of loess saturated with different concentrations of sodium chloride solution. Engineering Geology, 155, 69–79. doi:10.1016/j.enggeo.2012.12.018.
  • Zhang, C.L., et al., 2017. Effect of cement on the stabilization of loess. Journal of Mountain Science, 14 (11), 2325–2336. doi:10.1007/s11629-017-4365-4.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.