113
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Effects of TiC on the Microstructure, Mechanical Properties, and Wear Behavior of E690 Steel Prepared by Laser Cladding

, , , , , , , , & show all
Pages 1153-1168 | Received 23 Jun 2023, Accepted 23 Oct 2023, Published online: 15 Nov 2023

References

  • Khan, S. A. R., Zaman, K., and Zhang, Y. (2016), "The Relationship Between Energy-Resource Depletion, Climate Change, Health Resources and the Environmental Kuznets Curve: Evidence From the Panel of Selected Developed Countries," Renewable and Sustainable Energy Reviews, 62, pp 468–477. doi:10.1016/j.rser.2016.04.061
  • Soares-Ramos, E. P. P., de Oliveira-Assis, L., Sarrias-Mena, R., and Fernández-Ramírez, L. M. (2020), "Current Status and Future Trends of Offshore Wind Power in Europe," Energy, 202, p 117787. doi:10.1016/j.energy.2020.117787
  • Feng, K., Smith, W. A., and Peng, Z. (2021), "Use of an Improved Vibration-Based Updating Methodology for Gear Wear Prediction," Engineering Failure Analysis, 120, p 105066. doi:10.1016/j.engfailanal.2020.105066
  • Shi-qing, Z. "Reason Analysis and Repair on Rack Teeth Fracture of Leg 3 on HH Jack—Up Platform," Ship & Ocean Engineering, 46, pp 99–103 (in Chinese).
  • Ren, Z., Verma, A. S., Li, Y., Teuwen, J. J. E., and Jiang, Z. (2021), "Offshore Wind Turbine Operations and Maintenance: A State-of-the-Art Review," Renewable and Sustainable Energy Reviews, 144, p 110886. doi:10.1016/j.rser.2021.110886
  • Drumond, G. P., Pasqualino, I. P., Pinheiro, B. C., and Estefen, S. F. (2018), "Pipelines, Risers and Umbilicals Failures: A Literature Review," Ocean Engineering, 148, pp 412–425. doi:10.1016/j.oceaneng.2017.11.035
  • Ma, H. C., Liu, Z. Y., Du, C. W., Wang, H. R., Li, X. G., Zhang, D. W., and Cui, Z. Y. (2015), "Stress Corrosion Cracking of E690 Steel as a Welded Joint in a Simulated Marine Atmosphere Containing Sulphur Dioxide," Corrosion Science, 100, pp 627–641. doi:10.1016/j.corsci.2015.08.039
  • Lu, Q., Wang, L., Xin, J., Tian, H., Wang, X., and Cui, Z. (2020), "Corrosion Evolution and Stress Corrosion Cracking of E690 Steel for Marine Construction in Artificial Seawater Under Potentiostatic Anodic Polarization," Construction and Building Materials, 238, p 117763. doi:10.1016/j.conbuildmat.2019.117763
  • Cao, Y., Wang, Z., Shi, W., Hua, G., and Qiu, M. (2022), "Formation Mechanism and Weights Analysis of Residual Stress Holes in E690 High-Strength Steel by Laser Shock Peening," Coatings, 12(2), p 285. doi:10.3390/coatings12020285
  • Xiong, X., Hu, Z., Qin, X., Du, X., Wan, G., Ni, M., Hu, D., Ji, F., and Hua, L. (2023), "In-Situ Fabrication of Repairing Layers for Large Structures Using Follow-Up Hot-Hammering-Assisted Wire Arc Additive Manufacturing," Journal of Manufacturing Processes, 94, pp 387–402. doi:10.1016/j.jmapro.2023.03.023
  • Yin, X., He, G., Meng, W., Xu, Z., Hu, L., and Ma, Q. (2020), "Comparison Study of Low-Heat-Input Wire Arc-Fabricated Nickel-Based Alloy by Cold Metal Transfer and Plasma Arc," Journal of Materials Engineering and Performance, 29(7), pp 4222–4232. doi:10.1007/s11665-020-04942-3
  • Liu, S., Peng, Y., Zhang, Y., Wang, Y., Fan, W., Wang, A., Zhang, W., Tan, Y., Ma, Q., and Lan, Y. (2022), "Effect of Nanostructure on Wear and Corrosion Behavior of HVAF-Sprayed Eutectic High-Entropy Alloy Coatings," Journal of Thermal Spray Technology, 31(4), pp 1252–1262. doi:10.1007/s11666-022-01342-y
  • Liu, Y., Ding, Y., Yang, L., Sun, R., Zhang, T., and Yang, X. (2021), "Research and Progress of Laser Cladding on Engineering Alloys: A Review," Journal of Manufacturing Processes, 66, pp 341–363. doi:10.1016/j.jmapro.2021.03.061
  • Gou, J., Wang, Y., Zhang, Y., Wang, C., and Wang, G. (2021), "Dry Sliding Wear Behavior of Fe–Cr–C–B Hardfacing Alloy Modified With nano-CeO2 and Its Mechanisms of Modification," Wear, 484–485, p 203756. doi:10.1016/j.wear.2021.203756
  • Liu, Y., Wang, Y., Xu, X., Hopper, C., Dong, H., Wang, X., Zhu, H., and Jiang, J. (2021), "The Study of Hot Deformation on Laser Cladding Remanufactured 316L Stainless Steel," Materials & Design, 212, p 110255. doi:10.1016/j.matdes.2021.110255
  • Cao, Y., Zhu, P., Yang, Y., Shi, W., Qiu, M., Wang, H., and Xie, P. (2022), "Dislocation Mechanism and Grain Refinement of Surface Modification of NV E690 Cladding Layer Induced by Laser Shock Peening," Materials, 15(20), p 7254. doi:10.3390/ma15207254
  • Cao, Y., Wang, S., Shi, W., Qiu, M., Hua, G., and Li, B. (2021), "Effect of Laser Shock on Microstructure of the Repair Layer of E690 High Strength Steel by Laser Cladding," Acta Photonica Sinica, 50(4), p 0414001 (in Chinese).
  • Das, S., M, C., Samanta, S., Kayaroganam, P., and J, P. D. (2019), "Fabrication and Tribological Study of AA6061 Hybrid Metal Matrix Composites Reinforced With SiC/B4C Nanoparticles," Industrial Lubrication and Tribology, 71(1), pp 83–93. doi:10.1108/ILT-05-2018-0166
  • Palanivel, R., Dinaharan, I., Laubscher, R. F., and Davim, J. P. (2016), "Influence of Boron Nitride Nanoparticles on Microstructure and Wear Behavior of AA6082/TiB2 Hybrid Aluminum Composites Synthesized by Friction Stir Processing," Materials & Design, 106, pp 195–204. doi:10.1016/j.matdes.2016.05.127
  • Chen, H., Lu, T., Wang, Y., Liu, Y., Shi, T., Prashanth, K. G., and Kosiba, K. (2022), "Laser Additive Manufacturing of Nano-TiC Particles Reinforced CoCrFeMnNi High-Entropy Alloy Matrix Composites With High Strength And Ductility," Materials Science and Engineering: A, 833, p 142512. doi:10.1016/j.msea.2021.142512
  • Dinaharan, I., Kalaiselvan, K., Akinlabi, E. T., and Davim, J. P. (2017), "Microstructure and Wear Characterization of Rice Husk Ash Reinforced Copper Matrix Composites Prepared Using Friction Stir Processing," Journal of Alloys and Compounds, 718, pp 150–160. doi:10.1016/j.jallcom.2017.05.117
  • Rajabi, A., Ghazali, M. J., and Daud, A. R. (2015), "Chemical Composition, Microstructure and Sintering Temperature Modifications on Mechanical Properties of TiC-Based Cermet—A Review," Materials & Design, 67, pp 95–106. doi:10.1016/j.matdes.2014.10.081
  • Zhu, H., Ouyang, M., Hu, J., Zhang, J., and Qiu, C. (2021), "Design and Development of TiC-Reinforced 410 Martensitic Stainless Steel Coatings Fabricated by Laser Cladding," Ceramics International, 47(9), pp 12505–12513. doi:10.1016/j.ceramint.2021.01.108
  • Wang, X. H., Zhang, M., Liu, X. M., Qu, S. Y., and Zou, Z. D. (2008), "Microstructure and Wear Properties of TiC/FeCrBSi Surface Composite Coating Prepared by Laser Cladding," Surface and Coatings Technology, 202(15), pp 3600–3606. doi:10.1016/j.surfcoat.2007.12.039
  • Zhang, H., Wang, W.-X., Chang, F., Li, C.-L., Shu, S.-L., Wang, Z.-F., Han, X., Zou, Q., Qiu, F., and Jiang, Q. (2021), "Microstructure Manipulation and Strengthening Mechanisms of 40Cr Steel via Trace TiC Nanoparticles," Materials Science and Engineering: A, 822, p 141693. doi:10.1016/j.msea.2021.141693
  • Wang, X., Zhang, Z., Men, Y., Li, X., Liang, Y., and Ren, L. (2020), "Fabrication of Nano-TiC Functional Gradient Wear-Resistant Composite Coating on 40Cr Gear Steel Using Laser Cladding Under Starved Lubrication Conditions," Optics & Laser Technology, 126, p 106136. doi:10.1016/j.optlastec.2020.106136
  • Li, J., Qu, H., and Bai, J. (2022), "Grain Boundary Engineering During the Laser Powder Bed Fusion of TiC/316L Stainless Steel Composites: New Mechanism for Forming TiC-Induced Special Grain Boundaries," Acta Materialia, 226, p 117605. doi:10.1016/j.actamat.2021.117605
  • Wang, Z., Mao, X., Yang, Z., Sun, X., Yong, Q., Li, Z., and Weng, Y. (2011), "Strain-Induced Precipitation in a Ti Micro-Alloyed HSLA Steel," Materials Science and Engineering: A, 529, pp 459–467. doi:10.1016/j.msea.2011.09.062
  • Liu, S., and Liu, D. (2019), "Effect of Hard Phase Content on the Mechanical Properties of TiC-316 L Stainless Steel Cermets," International Journal of Refractory Metals and Hard Materials, 82, pp 273–278. doi:10.1016/j.ijrmhm.2019.04.020
  • Ertugrul, O., Maurizi Enrici, T., Paydas, H., Saggionetto, E., Boschini, F., and Mertens, A. (2020), "Laser Cladding of TiC Reinforced 316L Stainless Steel Composites: Feedstock Powder Preparation and Microstructural Evaluation," Powder Technology, 375, pp 384–396. doi:10.1016/j.powtec.2020.07.100
  • Das, K., Bandyopadhyay, T. K., and Das, S. (2002), "A Review on the Various Synthesis Routes of TiC Reinforced Ferrous Based Composites," Journal of Materials Science, 37(18), pp 3881–3892.
  • Wang, Z., Lin, T., He, X., Shao, H., Tang, B., and Qu, X. (2016), "Fabrication and Properties of the TiC Reinforced High-Strength Steel Matrix Composite," International Journal of Refractory Metals and Hard Materials, 58, pp 14–21. doi:10.1016/j.ijrmhm.2016.03.013
  • Zhang, M., Qu, K. L., Luo, S. X., and Liu, S. S. (2017), "Effect of Cr on the Microstructure and Properties of TiC-TiB2 Particles Reinforced Fe-Based Composite Coatings," Surface and Coatings Technology, 316, pp 131–137. doi:10.1016/j.surfcoat.2017.03.026
  • Pagounis, E., Lindroos, V. K., and Talvitie, M. (1996), "Influence of Reinforcement Volume Fraction and Size on the Microstructure and Abrasion Wear Resistance of Hot Isostatic Pressed White Iron Matrix Composites," Metallurgical and Materials Transactions A, 27(12), pp 4171–4181. doi:10.1007/BF02595665
  • Wei, W., Zhang, Q., Wu, W., Cao, H., Shen, J., Fan, S., and Duan, X. (2020), "Agglomeration-Free Nanoscale TiC Reinforced Titanium Matrix Composites Achieved by In-Situ Laser Additive Manufacturing," Scripta Materialia, 187, pp 310–316. doi:10.1016/j.scriptamat.2020.06.057
  • Lee, Y.-H., Kim, N., Lee, S.-B., Kim, Y., Cho, S., Lee, S.-K., and Jo, I. (2020), "Microstructure and Mechanical Properties of Lightweight TiC-Steel Composite Prepared by Liquid Pressing Infiltration Process," Materials Characterization, 162, p 110202. doi:10.1016/j.matchar.2020.110202
  • Zhao, Z., Li, J., Bai, P., Qu, H., Liang, M., Liao, H., Wu, L., Huo, P., Liu, H., and Zhang, J. (2019), "Microstructure and Mechanical Properties of TiC-Reinforced 316L Stainless Steel Composites Fabricated Using Selective Laser Melting," Metals, 9(2), p 267. doi:10.3390/met9020267
  • Zhao, S., Shen, X., Yang, J., Teng, W., and Wang, Y. (2018), "Densification Behavior and Mechanical Properties of Nanocrystalline TiC Reinforced 316L Stainless Steel Composite Parts Fabricated by Selective Laser Melting," Optics & Laser Technology, 103, pp 239–250. doi:10.1016/j.optlastec.2018.01.005
  • Li, C., Li, X., Deng, X., and Wang, Z. (2022), "Revealing the Role of Micron-Sized In Situ TiC Particles on Tensile Properties and Fracture Mechanism of Martensitic Wear-Resistant Steel at Elevated Temperature," Materials Science and Engineering: A, 832, p 142503. doi:10.1016/j.msea.2021.142503
  • Davim, J. P. (2011), Tribology for Engineers: A Practical Guide (Elsevier).
  • Zhang, B., He, B., and Wang, H. (2022), "Microstructural Investigation and Mechanical Performance of Laser Cladding Repaired Bainite Steel With AerMet100 Steel," Surface and Coatings Technology, 440, p 128498. doi:10.1016/j.surfcoat.2022.128498
  • Wu, J.-M., Lin, S.-J., Yeh, J.-W., Chen, S.-K., Huang, Y.-S., and Chen, H.-C. (2006), "Adhesive Wear Behavior of AlxCoCrCuFeNi High-Entropy Alloys as a Function of Aluminum Content," Wear, 261(5), pp 513–519. doi:10.1016/j.wear.2005.12.008
  • Degnan, C. C., and Shipway, P. H. (2002), "A Comparison of the Reciprocating Sliding Wear Behaviour of Steel Based Metal Matrix Composites Processed From Self-Propagating High-Temperature Synthesised Fe–TiC and Fe–TiB2 Masteralloys," Wear, 252(9), pp 832–841. doi:10.1016/S0043-1648(02)00051-0
  • Huang, L., Deng, X., Wang, Q., Jia, Y., Li, C., and Wang, Z. (2020), "Solidification and Sliding Wear Behavior of Low-Alloy Abrasion-Resistant Steel Reinforced With TiC Particles," Wear, 458–459, p 203444. doi:10.1016/j.wear.2020.203444
  • Cao, Y. J., Sun, J. Q., Ma, F., Chen, Y. Y., Cheng, X. Z., Gao, X., and Xie, K. (2017), "Effect of the Microstructure and Residual Stress on Tribological Behavior of Induction Hardened GCr15 Steel," Tribology International, 115, pp 108–115. doi:10.1016/j.triboint.2017.05.028
  • Akhtar, F., and Guo, S. J. (2008), "Microstructure, Mechanical and Fretting Wear Properties of TiC-Stainless Steel Composites," Materials Characterization, 59(1), pp 84–90. doi:10.1016/j.matchar.2006.10.021

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.