162
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Advancements in Polymer Friction and Wear: A Scratch-Modeling Approach

ORCID Icon &
Pages 1-14 | Received 12 May 2023, Accepted 03 Nov 2023, Published online: 27 Nov 2023

References

  • Brostow, W. (1985), “Science of Materials.” In Einstieg in die moderne Werkstoffwissenschaft, ed. R. E. Krieger, F. L. Malabar, and W. Brostow. Hanser: München.
  • Brostow, W., Darmarla, G., Howe, J., and Pietkiewicz, D. (2004), “Determination of Wear of Surfaces by Scratch Testing,” e-Polymers, 4(1). 10.1515/epoly.2004.4.1.255
  • Beegan, D., Chowdhury, S., and Laugier, M. T. (2007), “Comparison Between Nanoindentation and Scratch Test Hardness (Scratch Hardness) Values of Copper Thin Films on Oxidised Silicon Substrates,” Surface and Coatings Technology, 201(12), pp 5804–5808. 10.1016/j.surfcoat.2006.10.031
  • Bard, R., and Ulm, F. J. (2012), “Scratch Hardness–Strength Solutions for Cohesive‐Frictional Materials,” International Journal for Numerical and Analytical Methods in Geomechanics, 36(3), pp 307–326. 10.1002/nag.1008
  • Akono, A. T., Randall, N. X., and Ulm, F. J. (2012), “Experimental Determination of the Fracture Toughness via Microscratch Tests: Application to Polymers, Ceramics, and Metals,” Journal of Materials Research, 27(2), pp 485–493. 10.1557/jmr.2011.402
  • Lin, J. S., and Zhou, Y. (2013), “Can Scratch Tests Give Fracture Toughness?,” Engineering Fracture Mechanics, 109, pp 161–168. 10.1016/j.engfracmech.2013.06.002
  • Akono, A. T., and Ulm, F. J. (2011), “Scratch Test Model for the Determination of Fracture Toughness,” Engineering Fracture Mechanics, 78(2), pp 334–342. 10.1016/j.engfracmech.2010.09.017
  • Wang, Z., Zeng, Q., and Zheng, J. (2017), “Adsorption and Lubricating Behavior of Salivary Pellicle on Dental Ceramic,” Lubrication Engineering.
  • Miyake, S., and Yamazaki, S. (2013), “Nanoscratch Properties of Extremely Thin Diamond-Like Carbon Films,” Wear, 305(1–2), pp 69–77. 10.1016/j.wear.2013.05.005
  • Wredenberg, F., and Larsson, P. L. (2009), “Scratch Testing of Metals and Polymers: Experiments and Numerics,” Wear, 266(1–2), pp 76–83. 10.1016/j.wear.2008.05.014
  • Matthews, A., Franklin, S., and Holmberg, K. (2007), “Tribological Coatings: Contact Mechanisms and Selection,” Journal of Physics D: Applied Physics, 40(18), p 5463. 10.1088/0022-3727/40/18/S07
  • Charitidis, C., Logothetidis, S., and Gioti, M. (2000), “A Comparative Study of the Nanoscratching Behavior of Amorphous Carbon Films Grown Under Various Deposition Conditions,” Surface and Coatings Technology, 125(1–3), pp 201–206. 10.1016/S0257-8972(99)00546-0
  • Huang, L. Y., Xu, K. W., and Lu, J. (2002), “Evaluation of Scratch Resistance of Diamond-Like Carbon Films on Ti Alloy Substrate by Nano-Scratch Technique,” Diamond and Related Materials, 11(8), pp 1505–1510. 10.1016/S0925-9635(02)00054-7
  • Meng, B., Zhang, Y., and Zhang, F. (2016), “Material Removal Mechanism of 6H-SiC Studied by Nano-Scratching With Berkovich Indenter,” Applied Physics A, 122(3), pp 1–9. 10.1007/s00339-016-9802-7
  • Petit, F., Ott, C., and Cambier, F. (2009), “Multiple Scratch Tests and Surface-Related Fatigue Properties of Monolithic Ceramics and Soda Lime Glass,” Journal of the European Ceramic Society, 29(8), pp 1299–1307. 10.1016/j.jeurceramsoc.2008.09.019
  • Yang, X., Qiu, Z., and Li, X. (2019), “Investigation of Scratching Sequence Influence on Material Removal Mechanism of Glass-Ceramics by the Multiple Scratch Tests,” Ceramics International, 45(1), pp 861–873. 10.1016/j.ceramint.2018.09.256
  • Brostow, W., Deborde, J. L., Jaclewicz, M., and Olszynski, P. (2003), “Tribology With Emphasis on Polymers: Friction, Scratch Resistance and Wear,” Journal of Materials Education, 25(4/6), pp 119–132.
  • Brostow, W., Kovačevic, V., Vrsaljko, D., and Whitworth, J. (2010), “Tribology of Polymers and Polymer-Based Composites,” Journal of Materials Education, 32(5), p 273.
  • Brostow, W., Lobland, H. E. H., and Narkis, M. (2006), “Sliding Wear, Viscoelasticity, and Brittleness of Polymers,” Journal of Materials Research, 21(9), pp 2422–2428. 10.1557/jmr.2006.0300
  • Brostow, W., and Hagg Lobland, H. E. (2008), “Predicting Wear From Mechanical Properties of Thermoplastic Polymers,” Polymer Engineering & Science, 48(10), pp 1982–1985. 10.1002/pen.21045
  • Myshkin, N. K., Petrokovets, M. I., and Kovalev, A. V. (2005), “Tribology of Polymers: Adhesion, Friction, Wear, and Mass-Transfer,” Tribology International, 38(11–12), pp 910–921. 10.1016/j.triboint.2005.07.016
  • Wong, M., Lim, G. T., Moyse, A., Reddy, J. N., and Sue, H. J. (2004), “A New Test Methodology for Evaluating Scratch Resistance of Polymers,” Wear, 256(11–12), pp 1214–1227. 10.1016/j.wear.2003.10.027
  • Bermúdez, M. D., Brostow, W., Carrión-Vilches, F. J., Cervantes, J. J., and Pietkiewicz, D. (2005), “Wear of Thermoplastics Determined by Multiple Scratching,” e-Polymers, 5(1). 10.1515/epoly.2005.5.1.1
  • Sinha, S. K., Chong, W. L. M., and Lim, S. C. (2007), “Scratching of Polymers—Modeling Abrasive Wear,” Wear, 262(9–10), pp 1038–1047. 10.1016/j.wear.2006.10.017
  • Bermúdez, M. D., Brostow, W., Carrión-Vilches, F. J., Cervantes, J. J., and Pietkiewicz, D. (2005), “Friction and Multiple Scratch Behavior of Polymer + Monomer Liquid Crystal Systems,” Polymer, 46(2), pp 347–362. 10.1016/j.polymer.2004.11.003
  • Xiao, S., and Sue, H. J. (2019), “Effect of Molecular Weight on Scratch and Abrasive Wear Behaviors of Thermoplastic Polyurethane Elastomers,” Polymer, 169, pp 124–130. 10.1016/j.polymer.2019.02.059
  • Diez-Ibarbia, A., del Rincon, A. F., Iglesias, M., De-Juan, A., Garcia, P., and Viadero, F. (2016), “Efficiency Analysis of Spur Gears With a Shifting Profile,” Meccanica, 51(3), pp 707–723. 10.1007/s11012-015-0209-x
  • Sterner, O., Aeschlimann, R., Zürcher, S., Scales, C., Riederer, D., Spencer, N. D., and Tosatti, S. G. P. (2016), “Tribological Classification of Contact Lenses: From Coefficient of Friction to Sliding Work,” Tribology Letters, 63(1), pp 1–13. 10.1007/s11249-016-0696-5
  • Zhang, H., Takeuchi, Y., Chong, W. W., Mitsuya, Y., Fukuzawa, K., and Itoh, S. (2018), “Simultaneous In Situ Measurements of Contact Behavior and Friction to Understand the Mechanism of Lubrication With Nanometer-Thick Liquid Lubricant Films,” Tribology International, 127, pp 138–146. 10.1016/j.triboint.2018.05.043
  • Wang, J., Ma, L., Li, W., and Zhou, Z. (2018), “Influence of Different Lubricating Fluids on Friction Trauma of Small Intestine During Enteroscopy,” Tribology International, 126, pp 29–38. 10.1016/j.triboint.2018.05.002
  • Maegawa, S., Itoigawa, F., and Nakamura, T. (2015), “Effect of Normal Load on Friction Coefficient for Sliding Contact Between Rough Rubber Surface and Rigid Smooth Plane,” Tribology International, 92, pp 335–343. 10.1016/j.triboint.2015.07.014
  • Gao, C., and Liu, M. (2019), “Effects of Normal Load on the Coefficient of Friction by Microscratch Test of Copper With a Spherical Indenter,” Tribology Letters, 67(1), pp 1–12. 10.1007/s11249-018-1124-9
  • Li, S., Li, Q., Carpick, R. W., Gumbsch, P., Liu, X. Z., Ding, X., et al. (2016), “The Evolving Quality of Frictional Contact With Graphene,” Nature, 539(7630), pp 541–545. 10.1038/nature20135
  • Saravanan, P., Selyanchyn, R., Watanabe, M., Fujikawa, S., Tanaka, H., Lyth, S. M., and Sugimura, J. (2018), “Ultra-Low Friction of Polyethylenimine/Molybdenum Disulfide (PEI/MoS2)15 Thin Films in Dry Nitrogen Atmosphere and the Effect of Heat Treatment,” Tribology International, 127, pp 255–263. 10.1016/j.triboint.2018.06.003
  • Westlund, V., Heinrichs, J., and Jacobson, S. (2018), “On the Role of Material Transfer in Friction Between Metals: Initial Phenomena and Effects of Roughness and Boundary Lubrication in Sliding Between Aluminium and Tool Steels,” Tribology Letters, 66(3), pp 1–15. 10.1007/s11249-018-1048-4
  • Brierley, A. S., Fernandes, P. G., Brandon, M. A., Armstrong, F., Millard, N. W., McPhail, S. D., et al. (2002), “Antarctic Krill Under Sea Ice: Elevated Abundance in a Narrow Band Just South of Ice Edge,” Science, 295(5561), pp 1890–1892. 10.1126/science.1068574
  • Sekler, J., Steinmann, P. A., and Hintermann, H. E. (1988), “The Scratch Test: Different Critical Load Determination Techniques,” Surface and Coatings Technology, 36(1–2), pp 519–529. 10.1016/0257-8972(88)90179-X
  • Lu, P., Wood, R. J., Gee, M. G., Wang, L., and Pfleging, W. (2018), “A Novel Surface Texture Shape for Directional Friction Control,” Tribology Letters, 66(1), pp 1–13. 10.1007/s11249-018-0995-0
  • Gabriel, P., Thomas, A. G., and Busfield, J. J. C. (2010), “Influence of Interface Geometry on Rubber Friction,” Wear, 268(5–6), pp 747–750. 10.1016/j.wear.2009.11.019
  • Zhou, C., Hu, B., Qian, X., and Han, X. (2018), “A Novel Prediction Method for Gear Friction Coefficients Based on a Computational Inverse Technique,” Tribology International, 127, pp 200–208. 10.1016/j.triboint.2018.06.005
  • Polymers Properties Database (2015), http://polymerdatabase.com/polymerphysics/Poisson Table.html (accessed August 9, 2018).
  • Oliver, W. C., and Pharr, G. M. (1992), “An Improved Technique for Determining Hardness and Elastic Modulus Using Load and Displacement Sensing Indentation Experiments,” Journal of Materials Research, 7(6), pp 1564–1583. 10.1557/JMR.1992.1564
  • Tweedie, C. A., and Van Vliet, K. J. (2006), “On the Indentation Recovery and Fleeting Hardness of Polymers,” Journal of Materials Research, 21(12), pp 3029–3036. 10.1557/jmr.2006.0377
  • Briscoe, B. J., Evans, P. D., Pellilo, E., and Sinha, S. K. (1996), “Scratching Maps for Polymers,” Wear, 200(1–2), pp 137–147.
  • Pei, X. Q., Bennewitz, R., Busse, M., and Schlarb, A. K. (2013), “Effects of Single Asperity Geometry on Friction and Wear of PEEK,” Wear, 304(1–2), pp 109–117. 10.1016/j.wear.2013.04.032
  • Harget, P. J., and Siegmann, A. (1972), “Small‐Angle X‐Ray Scattering From Amorphous Polyethylene Terephthalate,” Journal of Applied Physics, 43(11), pp 4357–4362. 10.1063/1.1660928

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.