339
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

An Iterative Numerical Approach to Evaluate the Variable Friction Coefficient of Steel AMS5643 Using Ring Compression Tests

, , , & ORCID Icon
Pages 15-21 | Received 13 Jul 2022, Accepted 10 Nov 2023, Published online: 15 Dec 2023

References

  • Kobayashi, S., Altan, T., and Oh, S. I. (1989), Metal Forming and the Finite Element Method, 4th ed., Oxford University Press: Oxford.
  • Sofuoglu, H., and Rasty, J. (1999), “On the Measurement of Friction Coefficient Utilizing the Ring Compression Test,” Journal of Engineering Materials and Technology, 123(3), pp 338–348. 10.1115/1.1369601
  • Sedlacek, M., Gregorcic, P., and Podgornik, B. (2017), “Use of the Roughness Parameters Ssk and Sku to Control Friction—A Method for Designing Surface Texturing,” Tribology Transactions, 60(2), pp 260–266. 10.1080/10402004.2016.1159358
  • Menezes, P. L., Kishore  , and Kailas, S. V. (2009), “Study of Friction and Transfer Layer Formation in Copper-Steel Tribo-System: Role of Surface Texture and Roughness Parameters,” Tribology Transactions, 52(5), pp 611–622. 10.1080/10402000902825754
  • Qin, W., Jin, X., Kirk, A., Shipway, P. H., and Sun, W. (2018), “Effects of Surface Roughness on Local Friction and Temperature Distributions in a Steel-on-Steel Fretting Contact.” Tribology International, 120(1), pp 350–357. 10.1016/j.triboint.2018.01.016
  • Cristino, V. A. M., Rosa, P. A. R., and Martins, P. A. F. (2011), “Surface Roughness and Material Strength of Tribo-Pairs in Ring Compression Tests,” Tribology International, 44(2), pp 134–143. 10.1016/j.triboint.2010.10.002
  • Tomota, T., Masuda, R., Kondoh, Y., Ohmori, T., and Yagi, K. (2021), “Modeling Solid Contact between Rough Surfaces with Various Roughness Parameters,” Tribology Transactions, 64(1), pp 178–192. 10.1080/10402004.2020.1820123
  • He, X., Liu, Z., Ripley, L. B., Swensen, V. L., Griffin-Wiesner, I. J., Gulner, B. R., McAndrews, G. R., Weirser, J. R., Borovsky, B. P., Wang, Q. J., and Kim, S. H. (2021), “Empirical Relationship Between Interfacial Shear Stress and Contact Pressure in Micro- and Macro-Scale Friction,” Tribology International, 155, pp 1–8. 10.1016/j.triboint.2020.106780
  • Fukagai, S., Marshall, M. B., and Lewis, R. (2022), “Transition of the Friction Behaviour and Contact Stiffness due to Repeated High-Pressure Contact and Slip,” Tribology International, 170, pp 1–14. 10.1016/j.triboint.2022.107487
  • Woodhead, J., Truman, C. E., and Booker, J. D. (2015), “Modelling of Dynamic Friction in the Cold Forming of Plain Spherical Bearings,” Contact and Surface 2015, Valencia, 21–23 April, pp 141–152. WIT Press: Southampton. 10.2495/SECM150131
  • Hu, C., Chen, H., Zhang, W., and Ohshita, H. (2023), “Enhancing the Sensitivity of a Tribological Testing Method to Enable Development of Lubricants for Cold Forging,” Tribology International, 179, pp 1–10. 10.1016/j.triboint.2022.108156
  • Pearson, S., Shipway, P. H., Abere, J. O., and Hewitt, R. A. A. (2013), “The Effect of Temperature on Wear and Friction of a High Strength Steel in Fretting,” Wear, 303(2), pp 622–631. 10.1016/j.wear.2013.03.048
  • Zhu, K., Zeng, W., Ma, X., Tai, Q., Li, Z., and Li, X. (2011), “Determination of the Friction Factor of Ti-6Al-4V Titanium Alloy in Hot Forging by Means of Ring-Compression Test Using FEM,” Tribology International, 44(12), pp 2074–2080. 10.1016/j.triboint.2011.07.001
  • Mirahmadi, S. J., Hamedi, M., and Cheraghzadeh, M. (2015), “Investigating Friction Factor in Forging of Ti-6Al-4V through Isothermal Ring Compression Test,” Tribology Transactions, 58, pp 778–785. 10.1080/10402004.2015.1019598
  • Kunogi, M. (1956), “A New Method of Cold Extrusion,” Journal of Scientific Research Institute, 50(1437), pp 215–246.
  • Male, A., and Cockcroft, M. G. (1964), “A Method for the Determination of the Coefficient of Friction of Metals Under Conditions of Bulk Plastic Deformation,” Journal of the Institute of Metals, 93(3), p 241.
  • Sofuoglu, H., Gedilkli, H., and Rasty, J. (2001), “Determination of Friction Coefficient by Employing the Ring Compression Test,” Journal of Engineering Materials and Technology, Transactions of the ASME, 123(3), pp 338–348 10.1115/1.1369601
  • Martin, F., Martin, M. J., Sevilla, L., and Sebastian, M. A. (2015), “The Ring Compression Test: Analysis of Dimensions and Canonical Geometry,” Procedia Engineering, 132(2015), pp 326–333. 10.1016/j.proeng.2015.12.502
  • Kahhal, P., Yeganehfar, M., and Kashfi, M. (2021), “An Experimental and Numerical Evaluation of Steel A105 Friction Coefficient Using Different Lubricants at High Temperature,” Tribology Transactions, 65(1), pp 25–31. 10.1080/10402004.2021.1966147
  • Kalpajian, S., and Schmid, S. R. (2008), Manufacturing Processes for Engineering Materials, 5th ed., Pearson Education: Canada.
  • Kobayashi, S. (1982), “A Review on the Finite-Element Method and Metal Forming Process Modeling,” Journal of Applied Metalworking, 2( 1), pp 163–169. 10.1007/BF02834034
  • Cora, Ö. N., Akkök, M., and Darendelier, H. (2008), “Modelling of Variable Friction in Cold Forging,” Engineering Tribology, 222(1), pp 899–908. 10.1243/13506501JET419
  • Orsolini, A., and Booker, J. D. (2012), “Modelling Capabilities Required for the Double Nosing Process in the Assembly of Spherical Plain Bearings,” Journal of Engineering Manufacture, 226(5), pp 930–940. 10.1177/0954405411434679
  • Han, H. (2002), Determination of Flow Stress and Coefficient of Friction for Extruded Anisotropic Materials under Cold Forming Conditions, Royal Institute of Technology: Stockholm.
  • Lu, Y. (2005), “Study of Preform and Loading Rate in the Tube Nosing Process by Spherical Die,” Journal of Computational Methods in Applied Mechanics and Engineering, 194(25–26), pp 2839–2858. 10.1016/j.cma.2004.07.032
  • Foster, A. D., Copeland, T. J., Cox, C. J., Hall, P. W., Watkins, M. A., Wright, R., and Lin, J. (2009), “Error Analysis and Correction in the Slab Method for Determining Forming Forces,” International Journal of Mechanical Education, 37(4), pp 304–317. 10.7227/IJMEE.37.4.4
  • Gisbert, C., Bernal, C., and Camacho, A. M. (2015), “Improved Analytical Model for the Calculation of Forging Forces During Compression of Bimetallic Axial Assemblies,” Procedia Engineering, 132, pp 298–305. 10.1016/j.proeng.2015.12.498
  • Buschhausen, A., Weinmann, K., Altan, T., and Lee, J. (1992), “Evaluation of Lubrication and Friction in Cold Forging Using a Double Backward-Extrusion Process,” Journal of Material Processing Technology, 33(2), pp 95–108. 10.1016/0924-0136(92)90313-H
  • Kraus, M., Lenzen, M., and Marklien, M. (2021), “Contact Pressure-Dependent Friction Characterization by Using a Single Sheet Metal Compression Test,” Wear, 476(1). 10.1016/j.wear.2021.203679
  • Bialas, M., Maciejewski, J., and Kucharski, S. (2021), “Friction Coefficient of Solid Lubricating Coating as a Function of Contact Pressure: Experimental Results and Microscale Modeling,” Continuum Mechanics and Thermodynamics, 33(1), pp 1733–1745. 10.1007/s00161-021-00999-0
  • Hatherell, J., Arnaud, M., Dennis, G., Curry, W., and Matthews, J. (2023), “Exploring the Potential for a FEA-Based Design of Experiments to Develop Design Tools for Bulk-Metal Joining Processes,” International Conference on Engineering Design (ICED), Bordeaux, France, 24–28 July.
  • Sofuoglu, H., and Gedikli, H. (2002), “Determination of Friction Coefficient Encountered in Large Deformation Processes,” Tribology International, 35(1), pp 27–34. 10.1016/S0301-679X(01)00076-7
  • Bridgman, P. W. (1952), Studies in Large Plastic Flow and Fracture, McGraw-Hill: New York.
  • Ettouney, O., and Hardt, D. E. (1983), “A Method for In-Process Failure Prediction in Cold Upset Forging,” ASME Journal of Manufacturing Science and Engineering, 105(1), pp 161–167. 10.1115/1.3185883
  • Mielnik, E. M. (1991), Metalworking Science and Engineering, McGraw-Hill: New York.
  • Fereshteh-Saniee, F., Fallah-Nejad, K., Beheshtiha, A. S., and Badnava, H. (2013), “Investigation of Tension and Compression Behavior of AZ80 Magnesium Alloy,” Materials and Design, 50(1), pp 702–712. 10.1016/j.matdes.2013.03.080