648
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

On the Required Energy to Break Down the Thickener Structure of Lubricating Greases

ORCID Icon, ORCID Icon & ORCID Icon
Pages 123-128 | Received 25 Aug 2023, Accepted 15 Dec 2023, Published online: 31 Jan 2024

References

  • American Society for Testing and Materials (1991), ASTM Standard D2 17-88, Standard Test Methods for Cone Penetration of Lubricating Grease. Annual Book of ASTM Standards, American Society for Testing and Materials: Philadelphia, PA.
  • Zhou, Y., and Lugt, P. M. (2019), “On the Application of the Mechanical Aging Master Curve for Lubricating Greases to Rolling Bearings,” Tribology International, 141, pp 105918. doi:10.1016/j.triboint.2019.105918
  • Meijer, R. J., and Lugt, P. M. (2022), “The Grease Worker and Its Applicability to Study Mechanical Aging of Lubricating Greases for Rolling Bearings,” Tribology Transactions, 65, pp 32–45. doi: doi:10.1080/10402004.2021.1979151.
  • Zhou, Y., Bosman, R., and Lugt, P. M. (2019), “A Master Curve for the Shear Degradation of Lubricating Greases with a Fibrous Structure,” Tribology Transactions, 62, pp 78–87. doi:10.1080/10402004.2018.1496304
  • Moore, R. J., and Cravath, A. M. (1951), “Mechanical Breakdown of Soap-Base Greases,” Industrial & Engineering Chemistry, 43, pp 2892–2897. doi: doi:10.1021/ie50504a064.
  • Lugt, P. M. (2013), Grease Lubrication in Rolling Bearings, 1st ed., John Wiley & Sons, Ltd., The Atrium: Chichester, UK. doi: doi:10.1002/9781118483961.
  • Acar, N., Franco, J. M., and Kuhn, E. (2020), “On the Shear-Induced Structural Degradation of Lubricating Greases and Associated Activation Energy: An Experimental Rheological Study,” Tribology International, 144, pp 106105. doi:10.1016/j.triboint.2019.106105
  • Osara, J. A., and Bryant, M. D. (2019), “Thermodynamics of Grease Degradation,” Tribology International, 137, pp 433–445. doi:10.1016/j.triboint.2019.05.020
  • Rezasoltani, A., and Khonsari, M. M. (2014), “On the Correlation between Mechanical Degradation of Lubricating Grease and Entropy,” Tribology Letters, 56, pp 197–204. doi: doi:10.1007/s11249-014-0399-8. doi:http://dx.doi.org/10.1007/s11249-014-0399-8.
  • Chatra, K. R. S., Osara, J. A., and Lugt, P. M. (2023), “Thermo-Mechanical Aging during Churning in Grease Lubricated Bearings and Its Impact on Grease Life,” Tribology International, 181, pp 108248. doi:10.1016/j.triboint.2023.108248
  • Kuhn, E. (2009), Zur Tribologie der Schmierfette: Eine energetische Betrachtungsweise des Reibungs-und Verschleißprozesses, Renningen: Expert Verlag.
  • Tachibana, T., and Kambara, H. (1969), “Studies of Helical Aggregates of Molecules. I. Enantiomorphism in the Helical Aggregates of Optically Active 12-Hydroxystearic Acid and Its Lithium Salt,” Bulletin of the Chemical Society of Japan, 42, pp 3422–3424. doi:10.1246/bcsj.42.3422
  • Sathwik Chatra, K. R., and Lugt, P. M. (2020), “Channeling Behavior of Lubricating Greases in Rolling Bearings: Identification and Characterization,” Tribology International, 143, pp 106061. doi: doi:10/gh637z. doi:10.1016/j.triboint.2019.106061
  • Yang, H.-K., Zhang, C., He, X.-N., and Wang, P.-Y. (2021), “Effects of Alkyl Chain Lengths on 12-Hydroxystearic Acid Derivatives Based Supramolecular Organogels,” Colloids and Surfaces A: Physicochemical and Engineering Aspects, 616, pp 126319. doi:10.1016/j.colsurfa.2021.126319
  • Wilkinson, J., Wilkinson, M., and Nolan, S. J. (2015), “Challenging Conventional Wisdom: Is 12-Hydroxystearic Acid the Best Fatty Acid for Making High Dropping Point Lithium Greases?,” ELGI Spokesman, 1, pp 25–30.
  • Si, R., Ren, Q., He, Y., and Long, J. (2023), “Molecular Self-Assembling Structure and Formation Mechanism of Lubricating Grease: A Computational Simulation Approach,” Tribology International, 179, pp 108150. doi: doi:10.1016/j.triboint.2022.108150.
  • Chattopadhyay, S., Tobias, H. J., and Ziemann, P. J. (2001), “A Method for Measuring Vapor Pressures of Low-Volatility Organic Aerosol Compounds Using a Thermal Desorption Particle Beam Mass Spectrometer,” Analytical Chemistry, 73, pp 3797–3803. doi: doi:10.1021/ac010304j.
  • NIST (2023), “Lithium-12-Hydroxy Stearate.” Available at: https://webbook.nist.gov/cgi/cbook.cgi?Formula=C18H35LiO3 (accessed May 16, 2023).
  • Zhou, Y., Bosman, R., and Lugt, P. M. (2018), “A Model for Shear Degradation of Lithium Soap Grease at Ambient Temperature,” Tribology Transactions, 61, pp 61–70. doi: doi:10.1080/10402004.2016.1272730.
  • Hogenberk, F., Osara, J. A., van den Ende, D., and Lugt, P. M. (2022), “On the Evolution of Oil-Separation Properties of Lubricating Greases under Shear Degradation,” Tribology International, 179, pp 108154. doi:10.1016/j.triboint.2022.108154
  • Barnes, H. A. (2000), A Handbook of Elementary Rheology, University of Wales Institute of Non-Newtonian Fluid Mechanics: Aberystwyth, UK.
  • Einstein, A. (1905), Eine neue Bestimmung der Moleküldimensionen [Doctoral Thesis, ETH Zurich].
  • Abraham, S., Lan, Y., Lam, R. S. H., Grahame, D. A. S., Kim, J. J. H., Weiss, R. G., and Rogers, M. A. (2012), “Influence of Positional Isomers on the Macroscale and Nanoscale Architectures of Aggregates of Racemic Hydroxyoctadecanoic Acids in Their Molecular Gel, Dispersion, and Solid States,” Langmuir, 28, pp 4955–4964. doi:10.1021/la204412t
  • Forster, E. O., Kolfenbach, J. J., and Leland, H. L. (1956), “Fibers, Forces and Flow,” NLGI Spokesman, 20, pp 16–22.
  • Paszkowski, M., and Olsztyńska-Janus, S. (2014), “Grease Thixotropy: Evaluation of Grease Microstructure Change Due to Shear and Relaxation,” Industrial Lubrication and Tribology, 66, pp 223–237. doi: doi:10.1108/ILT-02-2012-0014.