52
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Comparative Analysis of Tribological Behavior in Aluminum Matrix Composites Incorporating Fe75Si15Zr5B5 Metallic Glass and SiC Particles

ORCID Icon &
Pages 129-140 | Received 05 Aug 2023, Accepted 17 Dec 2023, Published online: 06 Feb 2024

References

  • Weng, Z., Pan, R., Liu, B., Gu, K., Zhang, M., Cui, C., and Wang, J. (2023), “Subsurface Deformation and Wear Behavior of 15% SiCp/2009Al Aluminum Matrix Composite Under Cryogenic Sliding,” Ceramics International, 49, pp 17135–17147. doi:10.1016/j.ceramint.2023.02.076
  • Maji, P., Nath, R. K., Paul, P., Bhogendro Meitei, R. K., and Ghosh, S. K. (2021), “Effect of Processing Speed on Wear and Corrosion Behavior of Novel MoS2 and CeO2 Reinforced Hybrid Aluminum Matrix Composites Fabricated by Friction Stir Processing,” Journal of Manufacturing Processes, 69, pp 1–11. doi:10.1016/j.jmapro.2021.07.032
  • Kumar, D., Roy, H., and Show, B. K. (2015), “Tribological Behavior of an Aluminum Matrix Composite with Al4SiC4 Reinforcement Under Dry Sliding Condition,” Tribology Transactions, 58, pp 518–526. doi:10.1080/10402004.2014.990594
  • Dinaharan, I., Allwyn Kingsly Gladston, J., David Raja Selvam, J., and Jen, T.-C. (2023), “Influence of Particle Content and Temperature on Dry Sliding Wear Behavior of Rice Husk Ash Reinforced AA6061 Slurry Cast Aluminum Matrix Composites,” Tribology International, 183, pp 108406. doi:10.1016/j.triboint.2023.108406
  • Ferraris, M., Gili, F., Lizarralde, X., Igartua, A., Mendoza, G., Blugan, G., Gorjan, L., and Casalegno, V. (2022), “SiC Particle Reinforced Al Matrix Composites Brazed on Aluminum Body for Lightweight Wear Resistant Brakes,” Ceramics International, 48, pp 10941–10951. doi:10.1016/j.ceramint.2021.12.313
  • Bharathi, P., and Sampath Kumar, T. (2023), “Effect of Silicon Carbide and Boron Carbide on Mechanical and Tribological Properties of Aluminium 7075 Composites for Automobile Applications,” Silicon, 15, pp 6147–6171. doi:10.1007/s12633-023-02498-0
  • Qu, X., Wang, F., Shi, C., Zhao, N., Liu, E., He, C., and He, F. (2018), “In Situ Synthesis of a Gamma-Al2O3 Whisker Reinforced Aluminium Matrix Composite by Cold Pressing and Sintering,” Materials Science and Engineering: A, 709, pp 223–231. doi:10.1016/j.msea.2017.10.063
  • Meng, T., Feng, Y., Wang, R., Wang, X., Cai, Z., and Dong, C. (2021), “Effect of Grp on Microstructure and Properties of SiCp/Al Composites for Brake Discs,” Tribology Transactions, 64, pp 873–882. doi:10.1080/10402004.2021.1945177
  • Yu, T., Liu, J., He, Y., Tian, J., Chen, M., and Wang, Y. (2021), 2021/07/15/“Microstructure and Wear Characterization of Carbon Nanotubes (CNTs) Reinforced Aluminum Matrix Nanocomposites Manufactured Using Selective Laser Melting,” Wear, 476, pp 203581. doi:10.1016/j.wear.2020.203581
  • Hasan, M. S., Kordijazi, A., Rohatgi, P. K., and Nosonovsky, M. (2022), “Machine Learning Models of the Transition from Solid to Liquid Lubricated Friction and Wear in Aluminum-Graphite Composites,” Tribology International, 165, pp 107326. doi:10.1016/j.triboint.2021.107326
  • Aswinprasad, V., Sriharish, V. S., Venkatesh, C., Husen Meda, A., and Kamalakannan, N. (2020), “Experimental Investigation of Wear Characteristics of Aluminium 6063 Hybrid Composite Reinforced with Graphite and Molybdenum Di Sulfide (MoS2),” Materials Today: Proceedings, 22, pp 3190–3196. doi:10.1016/j.matpr.2020.03.456
  • Abedinzadeh, R., Norouzi, E., and Toghraie, D. (2022), “Study on Machining Characteristics of SiC–Al2O3 Reinforced Aluminum Hybrid Nanocomposite in Conventional and Laser-Assisted Turning,” Ceramics International, 48, pp 29205–29216. doi:10.1016/j.ceramint.2022.05.196
  • Stojanović, B., Babić, M., Veličković, S., and Blagojević, J. (2016), “Tribological Behavior of Aluminum Hybrid Composites Studied by Application of Factorial Techniques,” Tribology Transactions, 59, pp 522–529. doi:10.1080/10402004.2015.1091535
  • Van Trinh, P., Lee, J., Kang, B., Minh, P. N., Phuong, D. D., and Hong, S. H. (2022), “Mechanical and Wear Properties of SiCp/CNT/Al6061 Hybrid Metal Matrix Composites,” Diamond and Related Materials, 124, pp 108952. doi:10.1016/j.diamond.2022.108952
  • Diler, E. A., and Ipek, R. (2013), “Main and Interaction Effects of Matrix Particle Size, Reinforcement Particle Size and Volume Fraction on Wear Characteristics of Al–SiCp Composites Using Central Composite Design,” Composites Part B: Engineering, 50, pp 371–380. doi:10.1016/j.compositesb.2013.02.001
  • Ravindran, P., Manisekar, K., Narayanasamy, R., and Narayanasamy, P. (2013), “Tribological Behaviour of Powder Metallurgy-Processed Aluminium Hybrid Composites with the Addition of Graphite Solid Lubricant,” Ceramics International, 39, pp 1169–1182. doi:10.1016/j.ceramint.2012.07.041
  • Babu, J., Kang, C., and Kim, H. (2011), “Dry Sliding Wear Behavior of Aluminum Based Hybrid Composites with Graphite Nanofiber–Alumina Fiber,” Materials & Design, 32, pp 3920–3925. doi:10.1016/j.matdes.2011.02.064
  • Jayalakshmi, S., and Gupta, M. (2015), Metallic Amorphous Alloy Reinforcements in Light Metal Matrices. Cham: Springer International Publishing.
  • Guan, H. D., Li, C. J., Peng, Y. Z., Gao, P., Feng, Z. X., Liu, Y. C., Li, J. N., Tao, J. M., and Yi, J. H. (2022), “Fe-Based Metallic Glass Particles Carry Carbon Nanotubes to Reinforce Al Matrix Composites,” Materials Characterization, 189, pp 112006. doi:10.1016/j.matchar.2022.112006
  • Wang, Z., Xie, M. S., Zhang, W. W., Yang, C., Xie, G. Q., and Louzguine-Luzgin, D. V. (2020), “Achieving Super-High Strength in an Aluminum Based Composite by Reinforcing Metallic Glassy Flakes,” Materials Letters, 262, pp 127059. doi:10.1016/j.matlet.2019.127059
  • Dudina, D. V., Bokhonov, B. B., Batraev, I. S., Amirastanov, Y. N., Ukhina, A. V., Kuchumova, I. D., Legan, M. A., Novoselov, A. N., Gerasimov, K. B., Bataev, I. A., Georgarakis, K., Koga, G. Y., Guo, Y., Botta, W. J., and Jorge, A. M., Jr. (2021), “Interaction Between Fe66Cr10Nb5B19 Metallic Glass and Aluminum During Spark Plasma Sintering,” Materials Science and Engineering: A, 799, pp 140165. doi:10.1016/j.msea.2020.140165
  • Zhang, K., Zhou, Z., Wu, L., Wang, G., and Zhang, X. (2023), “Microstructure and Long-Term Corrosion Resistance of Plasma-Sprayed FeCrMoCB Metallic Glass/Al2O3-13 wt%TiO2 Composite Coatings with Sandwich-Like and Dispersed Structures,” Ceramics International, 49, pp 30522–30535. doi:10.1016/j.ceramint.2023.07.002
  • Wang, H., Chen, W., Liang, Z., Zhang, Y., and Qin, B. (2023), “Microstructure and Mechanical Properties of Nano Dual-Phase TiCuNi Metallic Glass Films Achieved by Modulating Magnetron Sputtering Temperature,” Vacuum, 214, pp 112223. doi:10.1016/j.vacuum.2023.112223
  • Chen, Y., Bo, Z.-X., Sun, Y. H., Sun, B.-A., and Wang, W. H. (2023), “Pre-Yield Serrations in a Mg-Based Bulk Metallic Glass During Compression,” Journal of Alloys and Compounds, 945, pp 169268. doi:10.1016/j.jallcom.2023.169268
  • Jones, M. R., Kustas, A. B., Lu, P., Chandross, M., and Argibay, N. (2020), “Environment-Dependent Tribological Properties of Bulk Metallic Glasses,” Tribology Letters, 68, pp 123. doi:10.1007/s11249-020-01364-z
  • Zheng, R., Yang, H., Liu, T., Ameyama, K., and Ma, C. (2014), “Microstructure and Mechanical Properties of Aluminum Alloy Matrix Composites Reinforced with Fe-Based Metallic Glass Particles,” Materials & Design, 53, pp 512–518. doi:10.1016/j.matdes.2013.07.048
  • Balcı, Ö., Prashanth, K., Scudino, S., Ağaoğulları, D., Duman, İ., Öveçoğlu, M., Uhlenwinkel, V., and Eckert, J. (2015), “Effect of Milling Time and the Consolidation Process on the Properties of Al Matrix Composites Reinforced with Fe-Based Glassy Particles,” Metals, 5, pp 669–685. doi:10.3390/met5020669
  • Rezaei, M., Albooyeh, A., and Golafshani, F. G. (2023), “Effect of Matrix Particle Size on Densification Behavior, Microstructure, and Mechanical Properties of an Al/FMG/SiC Hybrid Composite,” Silicon, 15, pp 1–12.
  • Guan, H. D., Li, C. J., Gao, P., Yi, J. H., Bao, R., Tao, J. M., Fang, D., and Feng, Z. X. (2020), “Fe-Based Metallic Glass Particles Reinforced Al-7075 Matrix Composites Prepared by Spark Plasma Sintering,” Advanced Powder Technology, 31, pp 3500–3506. doi:10.1016/j.apt.2020.06.038
  • Xie, M. S., Wang, Z., Zhang, G. Q., Yang, C., Zhang, W. W., and Prashanth, K. G. (2020), “Microstructure and Mechanical Property of Bimodal-Size Metallic Glass Particle-Reinforced Al Alloy Matrix Composites,” Journal of Alloys and Compounds, 814, pp 152317. doi:10.1016/j.jallcom.2019.152317
  • Neamţu, B. V., Chicinaş, H. F., Marinca, T. F., Isnard, O., Chicinaş, I., and Popa, F. (2016), “Synthesis of Amorphous Fe75Si20−xMxB5 (M = Ti, Ta, Zr) via Wet Mechanical Alloying and Its Structural, Thermal and Magnetic Characterisation,” Advanced Powder Technology, 27, pp 461–470. doi:10.1016/j.apt.2016.01.027
  • Suryanarayana, C., and Inoue, A. (2013), “Iron-Based Bulk Metallic Glasses,” International Materials Reviews, 58, pp 131–166. doi:10.1179/1743280412Y.0000000007
  • Rezaei, M. R., Albooyeh, A., Chachei, R., and Malahi, P. (2022), “Effect of the Spark Plasma Sintering Temperature on the Microstructure and Mechanical Properties of a Ceramic/Metallic Glass Reinforced Hybrid Composite,” Journal of Composite Materials, 56, pp 2779–2788. doi:10.1177/00219983221078188
  • Rahimian, M., Ehsani, N., Parvin, N., and Baharvandi, H. R. (2009), “The Effect of Sintering Temperature and the Amount of Reinforcement on the Properties of Al–Al2O3 Composite,” Materials & Design, 30, pp 3333–3337. doi:10.1016/j.matdes.2008.11.027
  • Jayalakshmi, S., Gupta, S., Sankaranarayanan, S., Sahu, S., and Gupta, M. (2013), “Structural and Mechanical Properties of Ni60Nb40 Amorphous Alloy Particle Reinforced Al-Based Composites Produced by Microwave-Assisted Rapid Sintering,” Materials Science and Engineering: A, 581, pp 119–127. doi:10.1016/j.msea.2013.05.072
  • Slipenyuk, A., Kuprin, V., Milman, Y., Goncharuk, V., and Eckert, J. (2006), “Properties of P/M Processed Particle Reinforced Metal Matrix Composites Specified by Reinforcement Concentration and Matrix-to-Reinforcement Particle Size Ratio,” Acta Materialia, 54, pp 157–166. doi:10.1016/j.actamat.2005.08.036
  • Yang, Y., Lan, J., and Li, X. (2004), “Study on Bulk Aluminum Matrix Nano-Composite Fabricated by Ultrasonic Dispersion of Nano-Sized SiC Particles in Molten Aluminum alloy,” Materials Science and Engineering: A, 380, pp 378–383. doi:10.1016/j.msea.2004.03.073
  • Su, H., Gao, W., Feng, Z., and Lu, Z. (2012), “Processing, Microstructure and Tensile Properties of Nano-Sized Al2O3 Particle Reinforced Aluminum Matrix Composites,” Materials & Design, 36, pp 590–596. doi:10.1016/j.matdes.2011.11.064
  • Zhou, X., Gao, Y., and Wang, Y. (2023), “Wear behavior of Ni-Coated Carbon Fiber and ZrC Particles Reinforced 2024Al Matrix Composites,” Wear, 528–529, pp 204967. doi:10.1016/j.wear.2023.204967
  • Çelik, Y. H., and Seçilmiş, K. (2017), “Investigation of Wear Behaviours of Al Matrix Composites Reinforced with Different B4C Rate Produced by Powder Metallurgy Method,” Advanced Powder Technology, 28, pp 2218–2224. doi:10.1016/j.apt.2017.06.002
  • Moharami, A. (2020), “Improving the Dry Sliding-Wear Resistance of as-Cast Cu-10Sn-1P Alloy Through Accumulative Back Extrusion (ABE) Process,” Journal of Materials Research and Technology, 9, pp 10091–10096. doi:10.1016/j.jmrt.2020.07.022
  • He, T., Lu, T., Ciftci, N., Tan, H., Uhlenwinkel, V., Nielsch, K., and Scudino, S. (2020), “Mechanical Properties and Tribological Behavior of Aluminum Matrix Composites Reinforced With Fe-Based Metallic Glass Particles: Influence of Particle Size,” Powder Technology, 361, pp 512–519. doi:10.1016/j.powtec.2019.11.088
  • Alizadeh, A., Abdollahi, A., and Biukani, H. (2015), “Creep Behavior and Wear Resistance of Al 5083 Based Hybrid Composites Reinforced with Carbon Nanotubes (CNTs) and Boron Carbide (B4C),” Journal of Alloys and Compounds, 650, pp 783–793. doi:10.1016/j.jallcom.2015.07.214
  • Alizadeh, A., Khayami, A., Karamouz, M., and Hajizamani, M. (2022), “Mechanical Properties and Wear Behavior of Al5083 Matrix Composites Reinforced with High Amounts of SiC Particles Fabricated by Combined Stir Casting and Squeeze Casting; A Comparative Study,” Ceramics International, 48, pp 179–189. doi:10.1016/j.ceramint.2021.09.093
  • Rouhi, M., Moazami-Goudarzi, M., and Ardestani, M. (2019), “Comparison of Effect of SiC and MoS2 on Wear Behavior of Al Matrix Composites,” Transactions of Nonferrous Metals Society of China, 29, pp 1169–1183. doi:10.1016/S1003-6326(19)65025-9
  • Rejil, C. M., Dinaharan, I., Vijay, S. J., and Murugan, N. (2012), “Microstructure and Sliding Wear Behavior of AA6360/(TiC + B4C) Hybrid Surface Composite Layer Synthesized by Friction Stir Processing on Aluminum Substrate,” Materials Science and Engineering: A, 552, pp 336–344. doi:10.1016/j.msea.2012.05.049
  • Arif, S., Jamil, B., Naim Shaikh, M. B., Aziz, T., Ansari, A. H., and Khan, M. (2020), “Characterization of Surface Morphology, Wear Performance and Modelling of Graphite Reinforced Aluminium Hybrid Composites,” Engineering Science and Technology, an International Journal, 23, pp 674–690. doi:10.1016/j.jestch.2019.07.001
  • Sharifi, E. M., and Karimzadeh, F. (2011), “Wear Behavior of Aluminum Matrix Hybrid Nanocomposites Fabricated by Powder Metallurgy,” Wear, 271, pp 1072–1079. doi:10.1016/j.wear.2011.05.015

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.