166
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Study of Effect of Graphite Based Magnetorheological Fluids on Braking Performance and Rotor Surface of Magnetorheological Disk Brake Using Full-Scale Brake Inertia Dynamometer

&
Pages 157-172 | Received 07 Sep 2023, Accepted 18 Dec 2023, Published online: 08 Feb 2024

References

  • Kciuk, M., and Turczyn, R. (2006), “Properties and Application of Magnetorheological Fluids,” Journal of Achievements in Materials and Manufacturing Engineering, 18, pp 127–130.
  • Leung, W. C., Bullough, W. A., Wong, P. L., and Feng, C. (2004), “The Effect of Particle Concentration in a Magneto Rheological Suspension on the Performance of a Boundary Lubricated Contact,” Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 218, pp 251–264. doi:10.1243/1350650041762622
  • Sarkar, C., and Hirani, H. (2015), “Effect of Particle Size on Shear Stress of Magnetorheological Fluids,” Smart Science, 3, pp 65–73. doi:10.1080/23080477.2015.11665638
  • Ashfak, A., Saheed, A., Rasheed, K. A., and Jaleel, J. A. (2011), “Design, Fabrication and Evaluation of MR Damper,” International Journal of Aerospace and Mechanical Engineering, 1, pp 27–33.
  • Lokhande, S. B., and Patil, S. R. (2021), “Experimental Characterization and Evaluation of Magnetorheological Clutch for an Electric Two-Wheeler Application,” Measurement, 175, pp 109150. doi:10.1016/j.measurement.2021.109150
  • Bica, I. (2004), “Magnetorheological Suspension Electromagnetic Brake,” Journal of Magnetism and Magnetic Materials, 270, pp 321–326. doi:10.1016/j.jmmm.2003.08.030
  • Nagaya, K., Suda, A., Yoshida, H., Ohashi, Y., Ogiwara, H., and Wakamatsu, R. (2007), “MR Fluid Viscous Coupling and Its Torque Delivery Control,” Tribology International, 40, pp 89–97. doi:10.1016/j.triboint.2006.02.059
  • Choi, S. B., and Han, Y. M. (2012), Magnetorheological Fluid Technology: Applications in Vehicle Systems. CRC Press: Boca Raton.
  • Song, W. L., Choi, S. B., Choi, J. Y., and Lee, C. H. (2011), “Wear and Friction Characteristics of Magnetorheological Fluid Under Magnetic Field Activation,” Tribology Transactions, 54, pp 616–624. doi:10.1080/10402004.2011.584365
  • Wong, P. L., Bullough, W. A., Feng, C., and Lingard, S. (2001), “Tribological Performance of a Magneto-Rheological Suspension,” Wear, 247, pp 33–40. doi:10.1016/S0043-1648(00)00507-X
  • Hu, Z. D., Yan, H., Qiu, H. Z., Zhang, P., and Liu, Q. (2012), “Friction and Wear of Magnetorheological Fluid Under Magnetic Field,” Wear, 278–279, pp 48–52. doi:10.1016/j.wear.2012.01.006
  • Sarkar, C., and Hirani, H. (2015), “Development of a Magnetorheological Brake with a Slotted Disc,” Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 229, pp 1907–1924. doi:10.1177/0954407015574204
  • Singh, R. K., and Sarkar, C. (2022), “Characterization of Magnetorheological Brake in Shear Mode Using High-Strength MWCNTs and Fumed Silica-Based Magnetorheological Fluids at Low Magnetic Fields,” Journal of Tribology, 145, pp 031702. doi:10.1115/1.4056042
  • Qin, H., Song, A., and Mo, Y. (2019), “Performance Evaluation of a Hollowed Multi-Drum Magnetorheological Brake Based on Finite Element Analysis Considering Hollow Casing Radius,” IEEE Access, 7, pp 96070–96078. doi:10.1109/ACCESS.2019.2930301
  • Nguyen, Q. H., and Choi, S. B. (2012), “Optimal Design of a Novel Hybrid MR Brake for Motorcycles Considering Axial and Radial Magnetic Flux,” Smart Materials and Structures, 21, pp 055003. doi:10.1088/0964-1726/21/5/055003
  • Kalikate, S. M., Patil, S. R., and Sawant, S. M. (2018), “Simulation-Based Estimation of an Automotive Magnetorheological Brake System Performance,” Journal of Advanced Research, 14, pp 43–51. doi:10.1016/j.jare.2018.05.011.
  • Michalec, M., Svoboda, P., Krupka, I., and Hartl, M. (2018), “Tribological Behaviour of Smart Fluids Influenced by Magnetic and Electric Field—A Review,” Tribology in Industry, 40, pp 515–528. doi:10.24874/ti.2018.40.04.01.
  • Song, W., Wang, S., Choi, S. B., Wang, N., and Xiu, S. (2019), “Thermal and Tribological Characteristics of A Disc-Type Magnetorheological Brake Operated by the Shear Mode,” Journal of Intelligent Material Systems and Structures, 30, pp 722–733. doi:10.1177/1045389X18770740.
  • Farjoud, A., Vahdati, N., and Fah, Y. F. (2008), “MR-Fluid Yield Surface Determination in Disc-Type MR Rotary Brakes,” Smart Materials and Structures, 17, pp 035021. doi:http://dx.doi.org/10.1088/0964-1726/17/3/035021.
  • Kumar, M., and Bijwe, J. (2011), “Non-Asbestos Organic (NAO) Friction Composites: Role of Copper; Its Shape and Amount,” Wear, 270, pp 269–280. doi:10.1016/j.wear.2010.10.068
  • Thakur, M. K., and Sarkar, C. (2021), “Thermal and Tribological Performance of Graphite Flake-Based Magnetorheological Fluid under Shear Mode Clutch,” Journal of Tribology, 143, pp 121806. doi:10.1115/1.4051044
  • Kumbhar, B. K., Patil, S. R., and Sawant, S. M. (2015), “Synthesis and Characterization of Magneto-Rheological (MR) Fluids for MR Brake Application,” Engineering Science and Technology, an International Journal, 18, pp 432–438. doi:10.1016/j.jestch.2015.03.002
  • Thakur, M. K., and Sarkar, C. (2020), “Influence of Graphite Flakes on the Strength of Magnetorheological Fluids at High Temperature and its Rheology,” IEEE Transactions on Magnetics, 56, pp 1–10. doi:10.1109/TMAG.2020.2978159
  • Paswan, S. K., Bedi, T. S., and Singh, A. K. (2017), “Modeling and Simulation of Surface Roughness in Magnetorheological Fluid Based Honing Process,” Wear, 376–377, pp 1207–1221. doi:10.1016/j.wear.2016.11.025
  • Stradling, A. W. (1993), “The Physics of Open-Gradient Dry Magnetic Separation,” International Journal of Mineral Processing, 39, pp 1–18. doi:10.1016/0301-7516(93)90048-F
  • Mohd Nasir, N. A., Nazmi, N., Mohamad, N., Ubaidillah, U., Nordin, N. A., Mazlan, S. A., Abdul Aziz, S. A., Shabdin, M. K., and Yunus, N. A. (2021), “Rheological Performance of Magnetorheological Grease with Embedded Graphite Additives,” Materials, 14, p 5091. doi:10.3390/ma14175091
  • Zhang, W. L., Kim, S. D., and Choi, H. J. (2014), “Effect of Graphene Oxide on Carbonyl-Iron-Based Magnetorheological Fluid,” IEEE Transactions on Magnetics, 50, pp 1–4. doi:10.1109/TMAG.2013.2275736
  • Pang, H., Xuan, S., Liu, T., and Gong, X. (2015), “Magnetic Field Dependent Electro-Conductivity of the Graphite Doped Magnetorheological Plastomers,” Soft Matter, 11, pp 6893–6902. doi:10.1039/c5sm00984g
  • Maurya, C. S., and Sarkar, C. (2021), “Rheological Response of Soft Flake-Shaped Carbonyl Iron Water-Based MR Fluid Containing Iron Nanopowder with Hydrophilic Carbon Shell,” Rheologica Acta, 60, pp 277–290. doi:10.1007/s00397-021-01268-2
  • Tang, X., Zhang, X., Tao, R., and Rong, Y. (2000), “Structure-Enhanced Yield Stress of Magnetorheological Fluids,” Journal of Applied Physics, 87, pp 2634–2638. doi:10.1063/1.372229

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.