210
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Study on the Formation Mechanism for High Rail Corrugation

, , , &
Pages 141-156 | Received 19 Oct 2023, Accepted 31 Dec 2023, Published online: 08 Feb 2024

References

  • Sato, Y., Matsumoto, A., and Knothe, K. (2002), “Review on Rail Corrugation Studies,” Wear, 253, pp 130–139. doi:10.1016/S0043-1648(02)00092-3
  • Oostermeijer, K. H. (2008), “Review on Short Pitch Rail Corrugation Studies,” Wear, 265, pp 1231–1237. doi:10.1016/j.wear.2008.01.037
  • Grassie, S. L. (2005), “Rail Corrugation: Advances in Measurement, Understanding and Treatment,” Wear, 258, pp 1224–1234. doi:10.1016/j.wear.2004.03.066
  • Cui, X. L., Chen, G. X., and Ouyang, H. J. (2019), “Study on the Effect of Track Curve Radius on Friction-Induced Oscillation of a Wheelset-Track System,” Tribology Transactions, 62, pp 688–700. doi:10.1080/10402004.2019.1601317
  • Grassie, S. L. (2009), “Rail Corrugation: Characteristics, Causes, and Treatments,” Proceedings of the Institution of Mechanical Engineers Part F-Journal of Rail and Rapid Transit, 223, pp 581–596. doi:10.1243/09544097JRRT264
  • Meehan, P. A., Daniel, W., and Campey, T. (2005), “Prediction of the Growth of Wear-Type Rail Corrugation,” Wear, 258, pp 1001–1013. doi:10.1016/j.wear.2004.03.049
  • Hiensch, M., Nielsen, J. C. O., and Verheijen, E. (2002), “Corrugation in the Netherlands—Measurements and Simulations,” Wear, 253, pp 140–149. doi:10.1016/S0043-1648(02)00093-5
  • Ma, C. Z., Gao, L., Xin, T., Cai, X. P., Nadakatti, M. M., and Wang, P. (2021), “The Dynamic Resonance under Multiple Flexible Wheelset-Rail Interactions and Its Influence on Rail Corrugation for High-Speed Railway,” Journal of Sound and Vibration, 498, pp 115968. doi:10.1016/j.jsv.2021.115968
  • Hempelmann, K., and Knothe, K. (1996), “An Extended Linear Model for the Prediction of Short Pitch Corrugation,” Wear, 191, pp 161–169. doi:10.1016/0043-1648(95)06747-7
  • Igeland, A., and Ilias, H. (1997), “Rail Head Corruption Growth Predictions Based on Non-Linear High Frequency Vehicle/Track Interaction,” Wear, 213, pp 90–97. doi:10.1016/S0043-1648(97)00172-5
  • Sheng, X., Thompson, D. J., Jones, C. J. C., Xie, G., Iwnicki, S. D., Allen, P., and Hsu, S. S. (2006), “Simulations of Roughness Initiation and Growth on Railway Rails,” Journal of Sound and Vibration, 293, pp 819–829. doi:10.1016/j.jsv.2005.08.050
  • Correa, N., Vadillo, E. G., Santamaria, J., and Herreros, J. (2016), “A Versatile Method in the Space Domain to Study Short-Wave Rail Undulatory Wear Caused by Rail Surface Defects,” Wear, 352–353, pp 196–208. doi:10.1016/j.wear.2016.02.012
  • Baeza, L., Vila, P., Xie, G., and Iwnicki, S. D. (2011), “Prediction of Rail Corrugation Using a Rotating Flexible Wheelset Coupled with a Flexible Track Model and a Non-Hertzian/Non-Steady Contact Model,” Journal of Sound and Vibration, 330, pp 4493–4507. doi:10.1016/j.jsv.2011.03.032
  • Torstensson, P. T., and Schilke, M. (2013), “Rail Corrugation Growth on Small Radius Curves-Measurements and Validation of a Numerical Prediction Model,” Wear, 303, pp 381–396. doi:10.1016/j.wear.2013.03.029
  • Wu, T. X., and Thompson, D. J. (2005), “An Investigation into Rail Corrugation Due to Micro-Slip under Multiple Wheel/Rail Interactions,” Wear, 258, pp 1115–1125. doi:10.1016/j.wear.2004.03.060
  • Jin, X. S., Wen, Z. F., Wang, K. Y., Zhou, Z. R., Liu, Q. Y., and Li, C. H. (2006), “Three-Dimensional Train-Track Model for Study of Rail Corrugation,” Journal of Sound and Vibration, 293, pp 830–855. doi:10.1016/j.jsv.2005.12.013
  • Nielsen, J. C. O. (2003), “Numerical Prediction of Rail Roughness Growth on Tangent Railway Tracks,” Journal of Sound and Vibration, 267, pp 537–548. doi:10.1016/S0022-460X(03)00713-2
  • Robles, R., Correa, N., Vadillo, E. G., and Blanco-Lorenzo, J. (2023), “Comprehensive Efficient Vertical and Lateral Track Dynamic Model to Study the Evolution of Rail Corrugation in Sharp Curves,” Journal of Sound and Vibration, 545, pp 117448. doi:10.1016/j.jsv.2022.117448
  • Sun, Y. Q., and Simson, S. (2008), “Wagon-Track Modelling and Parametric Study on Rail Corrugation Initiation Due to Wheel Stick-Slip Process on Curved Track,” Wear, 265, pp 1193–1201. doi:10.1016/j.wear.2008.02.043
  • Brockley, C., and Ko, P. (1988), “An Investigation of Rail Corrugation Using Friction-Induced Vibration Theory,” Wear, 128, pp 99–106. doi:10.1016/0043-1648(88)90256-6
  • Eadie, D. T., Kalousek, J., and Chiddick, K. C. (2002), “The Role of High Positive Friction (HPF) Modifier in the Control of Short Pitch Corrugations and Related Phenomena,” Wear, 253, pp 185–192. doi:10.1016/S0043-1648(02)00098-4
  • Suda, Y., Hanawa, M., Okumura, M., and Iwasa, T. (2002), “Study on Rail Corrugation in Sharp Curves of Commuter Line,” Wear, 253, pp 193–198. doi:10.1016/S0043-1648(02)00099-6
  • Matsumoto, A., Sato, Y., Ono, H., Tanimoto, M., Oka, Y., and Miyauchi, E. (2002), “Formation Mechanism and Countermeasures of Rail Corrugation on Curved Track,” Wear, 253, pp 178–184. doi:10.1016/S0043-1648(02)00097-2
  • Liu, X. G., and Wang, P. (2021), “Investigation of the Generation Mechanism of Rail Corrugation Based on Friction Induced Torsional Vibration,” Wear, 468–469, pp 203593. doi:10.1016/j.wear.2020.203593
  • Chen, G. X., Zhou, Z. R., Ouyang, H., Jin, X. S., Zhu, M. H., and Liu, Q. Y. (2010), “A Finite Element Study on Rail Corrugation Based on Saturated Creep Force-Induced Self-Excited Vibration of a Wheelset-Track System,” Journal of Sound and Vibration, 329, pp 4643–4655. doi:10.1016/j.jsv.2010.05.011
  • Cui, X. L., Chen, G. X., Yang, H. G., Zhang, Q., Ouyang, H., and Zhu, M. H. (2015), “Effect of the Wheel/Rail Contact Angle and the Direction of the Saturated Creep Force on Rail Corrugation,” Wear, 330–331, pp 554–562. doi:10.1016/j.wear.2014.12.046
  • Ma, K. K. (2022), “Field Measurement and Mechanism Analysis of Rail Corrugation on Steel Spring Floating Slab Track Section,” Sustainability, 14, pp 11790. doi:10.3390/su141811790
  • El Beshbichi, O., Wan, C., Bruni, S., and Kassa, E. (2020), “Complex Eigenvalue Analysis and Parameters Analysis to Investigate the Formation of Railhead Corrugation in Sharp Curves,” Wear, 450–451, pp 203150. doi:10.1016/j.wear.2019.203150
  • Fourie, D., Fröhling, R., and Heyns, S. (2020), “Railhead Corrugation Resulting from Mode-Coupling Instability in the Presence of Veering Modes,” Tribology International, 152, pp 106499. doi:10.1016/j.triboint.2020.106499
  • Wang, Z. Q., and Lei, Z. Y. (2021), “Analysis of Influence Factors of Rail Corrugation in Small Radius Curve Track,” Mechanical Sciences, 12, pp 31–40. doi:10.5194/ms-12-31-2021
  • Yang, W., Hong, X., Mahantesh, M. N., Xiaoyu, W., and Shuwei, F. (2023), “Mechanism of Rail Corrugation Combined with Friction Self-Excited Vibration and Wheel-Track Resonance,” Construction and Building Materials, 400, pp 132782. doi:10.1016/j.conbuildmat.2023.132782
  • AbuBakar, A. R., and Ouyang, H. (2006), “Complex Eigenvalue Analysis and Dynamic Transient Analysis in Predicting Disc Brake Squeal,” International Journal of Vehicle Noise and Vibration, 2, pp 143–155. doi:10.1504/IJVNV.2006.011051
  • Song, Q., Chen, G., Dong, B., Ren, W., and Feng, X. (2023), “Study on Rail Corrugation on Curved Tracks on Metro Ramps,” Wear, 523, pp 204769. doi:10.1016/j.wear.2023.204769
  • Zarraga, O., Ulacia, I., Manuel Abete, J., and Ouyang, H. (2017), “Receptance Based Structural Modification in a Simple Brake-Clutch Model for Squeal Noise Suppression,” Mechanical Systems and Signal Processing, 90, pp 222–233. doi:10.1016/j.ymssp.2016.12.028
  • Massi, F., Baillet, L., and Culla, A. (2009), “Structural Modifications for Squeal Noise Reduction: Numerical and Experimental Validation,” International Journal of Vehicle Design, 51, pp 168–189. doi:10.1504/IJVD.2009.027120
  • Oregui, M., Li, Z., and Dollevoet, R. (2015), “An Investigation into the Modeling of Railway Fastening,” International Journal of Mechanical Sciences, 92, pp 1–11. doi:10.1016/j.ijmecsci.2014.11.019
  • Wu, B. W., Chen, G. X., Lv, J. Z., Zhu, Q., and Kang, X. (2020), “Generation Mechanism and Remedy Method of Rail Corrugation at a Sharp Curved Metro Track with Vanguard Fasteners,” Journal of Low Frequency Noise Vibration and Active Control, 39, pp 368–381. doi:10.1177/1461348419845992

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.