Publication Cover
Numerical Heat Transfer, Part A: Applications
An International Journal of Computation and Methodology
Volume 85, 2024 - Issue 12
122
Views
11
CrossRef citations to date
0
Altmetric
Articles

Thermal performance of radiative magnetohydrodynamic Oldroyd-B hybrid nanofluid with Cattaneo–Christov heat flux model: Solar-powered ship application

, , , & ORCID Icon
Pages 1954-1972 | Received 05 Jan 2023, Accepted 09 May 2023, Published online: 26 May 2023

References

  • C. Parrado, G. Aymeric, F. Simon, and E. Fuentealba, “2050 LCOE (Levelized Cost of Energy) projection for a hybrid PV (photovoltaic)-CSP (concentrated solar power) plant in the Atacama Desert, Chile,” Energy, vol. 94, pp. 422–430, 2016. DOI: 10.1016/j.energy.2015.11.015.
  • W. Jamshed et al., “Solar energy optimization in solar-HVAC using Sutterby hybrid nanofluid with Smoluchowski temperature conditions: A solar thermal application,” Sci. Rep., vol. 12, no. 1, pp. 11484, 2022. DOI: 10.1038/s41598-022-15685-7.
  • L. Hernández-Callejo, S. Gallardo-Saavedra, and V. Alonso-Gómez, “A review of photovoltaic systems: Design, operation and maintenance,” Sol. Energy, vol. 188, pp. 426–440, 2019. DOI: 10.1016/j.solener.2019.06.017.
  • E. M. Deschamps and R. Rüther, “Optimization of inverter loading ratio for grid connected photovoltaic systems,” Sol. Energy, vol. 179, pp. 106–118, 2019. DOI: 10.1016/j.solener.2018.12.051.
  • N. Bozorgan and M. Shafahi, “Performance evaluation of nanofluids in solar energy: A review of the recent literature,” Micro Nano Syst. Lett., vol. 3, no. 1, pp. 1–15, 2015. DOI: 10.1186/s40486-015-0014-2.
  • O. K. Koriko et al., “Insight into dynamics of hydromagnetic flow of micropolar fluid containing nanoparticles and gyrotactic microorganisms at weak and strong concentrations of microelements: Homotopy analysis method,” AJCM., vol. 12, no. 02, pp. 267–282, 2022. DOI: 10.4236/ajcm.2022.122017.
  • N. A. Shah, O. Tosin, R. Shah, B. Salah, and J. D. Chung, “Brownian motion and thermophoretic diffusion effects on the dynamics of MHD upper convected Maxwell nanofluid flow past a vertical surface,” Phys. Scr., vol. 96, no. 12, pp. 125722, 2021. DOI: 10.1088/1402-4896/ac36ea.
  • T. Oreyeni, K. Ramesh, M. K. Nayak, and P. A. Oladele, “Triple stratification impacts on an inclined hydromagnetic bioconvective flow of micropolar nanofluid with exponential space-based heat generation,” Waves Random Complex Media, Advance online publication, 2022. DOI: 10.1080/17455030.2022.2112994.
  • O. K. Koriko et al., “Exploration of bioconvection flow of MHD thixotropic nanofluid past a vertical surface coexisting with both nanoparticles and gyrotactic microorganisms,” Sci. Rep., vol. 11, no. 1, pp. 16627, 2021. DOI: 10.1038/s41598-021-96185-y.
  • B. Ali, Y. Nie, S. A. Khan, M. T. Sadiq, and M. Tariq, “Finite element simulation of multiple slip effects on MHD unsteady Maxwell nanofluid flow over a permeable stretching sheet with radiation and thermo-diffusion in the presence of chemical reaction,” Processes, vol. 7, no. 9, pp. 628, 2019. DOI: 10.3390/pr7090628.
  • N. C. Roy and I. Pop, “Dual solutions of a nanofluid flow past a convectively heated nonlinearly shrinking sheet,” Chin. J. Phys., vol. 82, pp. 31–40, 2023. DOI: 10.1016/j.cjph.2022.12.008.
  • N. C. Roy and I. Pop, “Dual solutions of magnetohydrodynamic mixed convection flow of an Oldroyd-B nanofluid over a shrinking sheet with heat source/sink,” Alex. Eng. J., vol. 61, no. 8, pp. 5939–5948, 2022. DOI: 10.1016/j.aej.2021.11.021.
  • N. C. Roy and I. Pop, “Unsteady magnetohydrodynamic stagnation point flow of a nanofluid past a permeable shrinking sheet,” Chin. J. Phys., vol. 75, pp. 109–119, 2022. DOI: 10.1016/j.cjph.2021.12.018.
  • S. Bilal et al., “A comprehensive mathematical structuring of magnetically effected Sutterby fluid flow immersed in dually stratified medium under boundary layer approximations over a linearly stretched surface,” Alex. Eng. J., vol. 61, no. 12, pp. 11889–11898, 2022. DOI: 10.1016/j.aej.2022.05.044.
  • Z. A. Qureshi et al., “Mathematical analysis about influence of Lorentz force and interfacial nano layers on nanofluids flow through orthogonal porous surfaces with injection of SWCNTs,” Alex. Eng. J., vol. 61, no. 12, pp. 12925–12941, 2022. DOI: 10.1016/j.aej.2022.07.010.
  • I. A. Shah et al., “On analysis of magnetized viscous fluid flow in permeable channel with single wall carbon nano tubes dispersion by executing nano-layer approach,” Alex. Eng. J., vol. 61, no. 12, pp. 11737–11751, 2022. DOI: 10.1016/j.aej.2022.05.037.
  • R. K. Tiwari and M. K. Das, “Heat transfer augmentation in a two-sided lid-driven differentially heated square cavity utilizing nanofluids,” Int. J. Heat Mass Transf., vol. 50, no. 910, pp. 2002–2018, 2007. DOI: 10.1016/j.ijheatmasstransfer.2006.09.034.
  • S. O. Salawu, A. M. Obalalu, E. O. Fatunmbi, and R. A. Oderinu, “Thermal Prandtl-Eyring hybridized MoS2-SiO2/C3H8O2 and SiO2-C3H8O2 nanofluids for effective solar energy absorber and entropy optimization: A solar water pump implementation,” J. Mol. Liq., vol. 361, pp. 119608, 2022. DOI: 10.1016/j.molliq.2022.119608.
  • A. M. Obalalu et al., “Computational study of magneto-convective non-Newtonian nanofluid slip flow over a stretching/shrinking sheet embedded in a porous medium,” Comput. Math. Appl., vol. 119, pp. 319–326, 2022. DOI: 10.1016/j.camwa.2022.05.027.
  • A. M. Obalalu, O. A. Olayemi, C. B. Odetunde, and O. A. Ajala, “Significance of thermophoresis and Brownian motion on a reactive Casson-Williamson nanofluid past a vertical moving cylinder,” Comput. Therm. Sci., vol. 15, no. 1, pp. 75–91, 2023. DOI: 10.1615/ComputThermalScien.2022041799.
  • A. Abbasi et al., “Heat transport exploration of hybrid nanoparticle (Cu,Fe3O4)-based blood flow with tapered complex wavy curved channel with slip features,” Micromachines, vol. 13, no. 9, pp. 1415, 2022. DOI: 10.3390/mi13091415.
  • F. Haq et al., “Theoretical investigation of radiative viscous hybrid nanofluid towards a permeable surface of cylinder,” Chin. J. Phys., vol. 77, pp. 2761–2772, 2022. DOI: 10.1016/j.cjph.2022.05.013.
  • M. K. Nayak, S. Shaw, H. Waqas, and T. Muhammad, “Numerical computation for entropy generation in Darcy–Forchheimer transport of hybrid nanofluids with Cattaneo–Christov double-diffusion,” HFF., vol. 32, no. 6, pp. 1861–1882, 2022. DOI: 10.1108/HFF-04-2021-0295.
  • S. Shaw, S. S. Samantaray, A. Misra, M. K. Nayak, and O. D. Makinde, “Hydromagnetic flow and thermal interpretations of Cross hybrid nanofluid influenced by linear, nonlinear and quadratic thermal radiations for any Prandtl number,” Int. Commun. Heat Mass Transf., vol. 130, pp. 105816, 2022. DOI: 10.1016/j.icheatmasstransfer.2021.105816.
  • U. Khan, A. Zaib, A. Ishak, and S. A. Bakar, “Time-dependent Blasius–Rayleigh–Stokes flow conveying hybrid nanofluid and heat transfer induced by non-Fourier heat flux and transitive magnetic field,” Case Stud. Therm. Eng., vol. 26, pp. 101151, 2021. DOI: 10.1016/j.csite.2021.101151.
  • N. C. Roy, A. Hossain, and I. Pop, “Flow and heat transfer of MHD dusty hybrid nanofluids over a shrinking sheet,” Chin. J. Phys., vol. 77, pp. 1342–1356, 2022. DOI: 10.1016/j.cjph.2021.12.012.
  • N. C. Roy and I. Pop, “Exact solutions of Stokes’ second problem for hybrid nanofluid flow with a heat source,” Phys. Fluids, vol. 33, no. 6, pp. 063603, 2021. DOI: 10.1063/5.0054576.
  • N. C. Roy and I. Pop, “Heat and mass transfer of a hybrid nanofluid flow with binary chemical reaction over a permeable shrinking surface,” Chin. J. Phys., vol. 76, pp. 283–298, 2022. DOI: 10.1016/j.cjph.2021.10.041.
  • N. Acharya and K. Das, “Three-dimensional rotating flow of Cu–Al2O3/kerosene oil hybrid nanofluid in presence of activation energy and thermal radiation,” Numer. Heat Transf. A: Appl., Advance online publication, 2022. DOI: 10.1080/10407782.2022.2147111.
  • T. Tayebi and A. J. Chamkha, “Free convection enhancement in an annulus between horizontal confocal elliptical cylinders using hybrid nanofluids,” Numer. Heat Transf. A: Appl., vol. 70, no. 10, pp. 1141–1156, 2016. DOI: 10.1080/10407782.2016.1230423.
  • T. Tayebi and A. J. Chamkha, “Natural convection enhancement in an eccentric horizontal cylindrical annulus using hybrid nanofluids,” Numer. Heat Transf. A: Appl., vol. 71, no. 11, pp. 1159–1173, 2017. DOI: 10.1080/10407782.2017.1337990.
  • M. Amiri and D. Mikielewicz, “Three-dimensional numerical investigation of hybrid nanofluids in chain microchannel under electrohydrodynamic actuator,” Numer. Heat Transf. A: Appl., vol. 83, no. 10, pp. 1146–1173, 2023. DOI: 10.1080/10407782.2022.2150342.
  • J. Hasnain and N. Abid, “Numerical investigation for thermal growth in water and engine oil-based ternary nanofluid using three different shaped nanoparticles over a linear and nonlinear stretching sheet,” Numer. Heat Transf. A: Appl., Advance online publication, 2022. DOI: 10.1080/10407782.2022.2104582.
  • S. O. Salawu, A. M. Obalalu, and M. D. Shamshuddin, “Nonlinear solar thermal radiation efficiency and energy optimization for magnetized hybrid Prandtl–Eyring nanoliquid in aircraft,” Arab. J. Sci. Eng., vol. 48, no. 3, pp. 3061–3072, 2023. DOI: 10.1007/s13369-022-07080-1.
  • S. O. Salawu, A. M. Obalalu, and S. S. Okoya, “Thermal convection and solar radiation of electromagnetic actuator Cu–Al2O3/C3H8O2 and Cu–C3H8O2 hybrid nanofluids for solar collector optimization,” Mater. Today Commun., vol. 33, pp. 104763, 2022. DOI: 10.1016/j.mtcomm.2022.104763.
  • C. Cattaneo, “Sulla Condizione Del Calore,” Atti Del Semin. Matem. E Fis. Della Univ. Modena, vol. 3, pp. 83–101, 1948.
  • C. I. Christov, “On frame indifferent formulation of the Maxwell–Cattaneo model of finite-speed heat conduction,” Mech. Res. Commun., vol. 36, no. 4, pp. 481–486, 2009. DOI: 10.1016/j.mechrescom.2008.11.003.
  • G. Sarojamma, R. Vijaya Lakshmi, P. V. Satya Narayana, and I. L. Animasaun, “Exploration of the significance of autocatalytic chemical reaction and Cattaneo–Christov heat flux on the dynamics of a micropolar fluid,” J. Appl. Comput. Mech., vol. 6, no. 1, pp. 77–89, 2020. DOI: 10.22055/JACM.2019.28742.1501.
  • G. Rasool and T. Zhang, “Darcy–Forchheimer nanofluidic flow manifested with Cattaneo–Christov theory of heat and mass flux over non-linearly stretching surface,” PLoS One, vol. 14, no. 8, pp. e0221302, 2019. DOI: 10.1371/journal.pone.0221302.
  • M. Haneef, M. Nawaz, S. O. Alharbi, and Y. Elmasry, “Cattaneo–Christov heat flux theory and thermal enhancement in hybrid nano Oldroyd-B rheological fluid in the presence of mass transfer,” Int. Commun. Heat Mass Transf., vol. 126, pp. 105344, 2021. DOI: 10.1016/j.icheatmasstransfer.2021.105344.
  • S. R. R. Reddy, P. B. A. Reddy, and A. M. Rashad, “Effectiveness of binary chemical reaction on magneto-fluid flow with Cattaneo–Christov heat flux model,” Proc. Inst. Mech. Eng., C, vol. 235, no. 12, pp. 2192–2200, 2021. DOI: 10.1177/0954406220950347.
  • M. Ramzan, N. Shahmir, H. A. S. Ghazwani, Y. Elmasry, and S. Kadry, “A numerical study of nanofluid flow over a curved surface with Cattaneo–Christov heat flux influenced by induced magnetic field,” Numer. Heat Transf. A: Appl., vol. 83, no. 2, pp. 197–212, 2023. DOI: 10.1080/10407782.2022.2144976.
  • M. Ramzan, N. Shaheen, H. A. S. Ghazwani, Y. Elmasry, and S. Kadry, “Application of Corcione correlation in a nanofluid flow on a bidirectional stretching surface with Cattaneo–Christov heat flux and heat generation/absorption,” Numer. Heat Transf. A: Appl., Advance online publication, 2022. DOI: 10.1080/10407782.2022.2145396.
  • M. Sarfraz and M. Khan, “Cattaneo–Christov double diffusion based heat transport analysis for nanofluid flows induced by a moving plate,” Numer. Heat Transf. A: Appl., Advance online publication, 2023. DOI: 10.1080/10407782.2023.2186551.
  • D. Mohanty, G. Mahanta, and S. Shaw, “Analysis of irreversibility for 3-D MHD convective Darcy–Forchheimer Casson hybrid nanofluid flow due to a rotating disk with Cattaneo–Christov heat flux, Joule heating, and nonlinear thermal radiation,” Numer. Heat Transf. B: Fundam., Advance online publication, 2023. DOI: 10.1080/10407790.2023.2189644.
  • A. Ishak, R. Nazar, and I. Pop, “Mixed convection on the stagnation point flow toward a vertical, continuously stretching sheet,” J. Heat Transf., vol. 129, no. 8, pp. 1087–1090, 2007. DOI: 10.1115/1.2737482.
  • S. Das, S. Chakraborty, R. N. Jana, and O. D. Makinde, “Entropy analysis of unsteady magneto-nanofluid flow past accelerating stretching sheet with convective boundary condition,” Appl. Math. Mech.-Engl. Ed., vol. 36, no. 12, pp. 1593–1610, 2015. DOI: 10.1007/s10483-015-2003-6.
  • A. Ishak, R. Nazar, and I. Pop, “Boundary layer flow and heat transfer over an unsteady stretching vertical surface,” Meccanica, vol. 44, no. 4, pp. 369–375, 2009. DOI: 10.1007/s11012-008-9176-9.
  • W. Jamshed et al., “Comprehensive analysis on copper-iron (II, III)/oxide-engine oil Casson nanofluid flowing and thermal features in parabolic trough solar collector,” J. Taibah Univ. Sci., vol. 15, no. 1, pp. 619–636, 2021. DOI: 10.1080/16583655.2021.1996114.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.