Publication Cover
Numerical Heat Transfer, Part B: Fundamentals
An International Journal of Computation and Methodology
Volume 85, 2024 - Issue 5
76
Views
0
CrossRef citations to date
0
Altmetric
Articles

A data-driven framework for forecasting transient vehicle thermal performances

, & ORCID Icon
Pages 485-499 | Received 01 May 2023, Accepted 22 Jul 2023, Published online: 02 Aug 2023

References

  • X. Qi, G. Wu, P. Hao, K. Boriboonsomsin and M. J. Barth, “Integrated-connected eco-driving system for phevs with co-optimization of vehicle dynamics and powertrain operations,” IEEE Trans. Intell. Veh., vol. 2, no. 1, pp. 2–13, 2017. DOI: 10.1109/TIV.2017.2708599.
  • A. Ferrara, G. P. Incremona and E. Regolin, Incremona, “Optimization‐based adaptive sliding mode control with application to vehicle dynamics control,” Int. J. Robust Nonlinear Control., vol. 29, no. 3, pp. 550–564, 2019. DOI: 10.1002/rnc.4105.
  • A. Brandt, B. Jacobson and S. Sebben, “High speed driving stability of road vehicles under crosswinds: an aerodynamic and vehicle dynamic parametric sensitivity analysis,” Veh. Syst. Dyn., vol. 60, no. 7, pp. 2334–2357, 2022. DOI: 10.1080/00423114.2021.1903516.
  • E. A. Castañeda, R. P. León and J. Cornejo, “FEM and DEM simulations of tire-soil and drill-soil interactions in off-road conditions for mechanical design validation of a space exploration rover,” 12th International Conference on Mechanical and Aerospace Engineering (ICMAE), Athens, Greece: IEEE, Jul. 16, 2021. DOI: 10.1109/ICMAE52228.2021.9522493
  • E. Joa, K. Yi and Y. Hyun, “Estimation of the tire slip angle under various road conditions without tire–road information for vehicle stability control,” Control Eng. Pract, vol. 86, pp. 129–143, 2019. DOI: 10.1016/j.conengprac.2019.03.005.
  • S. Khaleghian, O. Ghasemalizadeh, S. Taheri and G. Flintsch, “A combination of intelligent tire and vehicle dynamic based algorithm to estimate the tire-road friction,” SAE Int. J. Passeng. Cars Mech, vol. 12, no. 2, pp. 81–98, 2019. DOI: 10.4271/06-12-02-0007.
  • M. Alcázar Vargas, J. Pérez Fernández, I. Sánchez Andrades, J. A. Cabrera Carrillo and J. J. Castillo Aguilar, “Modeling of the influence of operational parameters on tire lateral dynamics,” Sens., vol. 22, no. 17, pp. 6380, 2022. DOI: 10.3390/s22176380.
  • J. A. Hernandez, I. Al-Qadi and M. De Beer, “Impact of tire loading and tire pressure on measured 3D contact stresses,” Airfield & Highway Pavement Conference, 2013. DOI: 10.1061/9780784413005.044
  • L. Teodosio, F. Timpone, G. N. dell’Annunziata and A. Genovese, “RANS 3D CFD simulations to enhance the thermal prediction of tyre thermodynamic model: A hierarchical approach,” Results Eng., vol. 12, pp. 100288, 2021. DOI: 10.1016/j.rineng.2021.100288.
  • X. Fu, Z. Wang, L. Ma, Z. Zou, Q. Zhang and X. Guan, “Temperature-Dependence of rubber hyperelasticity based on the eight-chain model,” Polymers, vol. 12, no. 4, pp. 932, 2020. DOI: 10.3390/polym12040932.
  • A. Sakhnevych, et al., “Investigation on the model-based control performance in vehicle safety critical scenarios with varying tyre limits,” Sensors, vol. 21, no. 16, pp. 5372, 2021. DOI: 10.3390/s21165372.
  • K. Piotrowska, et al., “Assessment of the environmental impact of a car tire throughout its lifecycle using the LCA method,” Materials, vol. 12, no. 24, pp. 4177, 2019. DOI: 10.3390/ma12244177.
  • K. Grigoriadis, G. Mavros, J. Knowles and A. Pezouvanis, “Experimental investigation of tyre-road friction considering topographical roughness variation and flash temperature,” Tribol. Int., vol. 181, pp. 108294, 2023. DOI: 10.1016/j.triboint.2023.108294.
  • Y. Li, S. Zuo, L. Lei, X. Yang and X. Wu, “Analysis of impact factors of tire wear,” J. Vib. Control., vol. 18, no. 6, pp. 833–840, 2012. DOI: 10.1177/1077546311411756.
  • J. Wu, L. Chen, Y. Wang, B. Su, Z. Cui and D. Wang, “Effect of temperature on wear performance of aircraft tire tread rubber,” Polym. Test, vol. 79, pp. 106037, 2019. DOI: 10.1016/j.polymertesting.2019.106037.
  • G. Fu and A. Untaroiu, “Investigation of tire rotating modeling techniques using computational fluid dynamics,” J. Fluids Eng., vol. 143, no. 11, pp.111206, 2021. DOI: 10.1115/1.4051311.
  • J. A. Cabrera, J. J. Castillo, J. Pérez, J. M. Velasco, A. J. Guerra and P. Hernández, “A procedure for determining tire-road friction characteristics using a modification of the magic formula based on experimental results,” Sensors, vol. 18, no. 3, pp. 896, 2018. DOI: 10.3390/s18030896.
  • Lugaro, I. Konstantinou and M. Mazzeo, “A tire model extension for predicting temperature and rolling speed influences on tire performance,” JSAE Annu. Congr., vol. 5, pp. 25-26, 2020.
  • N. J. Persson, “Theory of rubber friction and contact mechanics,” J. Chem. Phys, vol. 115, no. 8, pp. 3840–3861, 2001. DOI: 10.1063/1.1388626.
  • M. Furlan and G. Mavros, “A Neural Network Approach for Roughness-Dependent Update of Tyre Friction,” Simul. Model. Pract. Theory, vol. 116, pp. 102484, 2022. DOI: 10.1016/j.simpat.2021.102484.
  • T. S. Song, J. W. Lee and H. J. Yu, “Rolling resistance of tires-an analysis of heat generation,” SAE Trans., vol. 107, pp. 507–511, 1998. DOI: 10.4271/980255.
  • W. V. Mars and J. R. Luchini, “An analytical model for the transient rolling resistance behavior of tires,” Tire. Sci. Technol., vol. 27, no. 3, pp. 161–175, 1999. DOI: 10.2346/1.2135982.
  • J. R. Cho, H. W. Lee, W. B. Jeong, K. M. Jeong and K. W. Kim, “Numerical estimation of rolling resistance and temperature distribution of 3-D periodic patterned tire,” Int. J. Solids Struct., vol. 50, no. 1, pp. 86–96, 2013. DOI: 10.1016/j.ijsolstr.2012.09.004.
  • H. Pacejka, Tire and Vehicle Dynamics, 3rd ed. San Francisco, CA, USA: Morgan Kaufmann, 2012.
  • H. B. Pacejka and I. J. M. Besselink, “Magic formula tyre model with transient properties,” Veh. Syst. Dyn., vol. 27, no. sup001, pp. 234–249, 1997. DOI: 10.1080/00423119608969658.
  • H. B. Pacejka and E. Bakker, “The magic formula tyre model,” Veh. Syst. Dyn., vol. 21, no. sup001, pp. 1–18, 1992. DOI: 10.1080/00423110408969994.
  • R. J. Martinez, “Flat-Trac® tire force & moment measurement systems,” Eden Prairie, MN, USA: MTS Systems Corporation. [Online]. Available: https://www.mts.com/en/products/automotive/tire-test-systems/flat-trac-tire-system. Accessed: Oct. 24, 2022.
  • C. Angrick, S. van Putten and G. Prokop, “Influence of tire core and surface temperature on lateral tire characteristics,” SAE Int. J. Passeng. Cars Mech. Syst., vol. 7, no. 2, pp. 468–481, 2014. DOI: 10.4271/2014-01-0074.
  • J. M. Besselink, A. J. Schmeitz and H. B. Pacejka, “An improved Magic Formula/Swift tyre model that can handle inflation pressure changes,” Veh. Syst. Dyn., vol. 48, no. sup1, pp. 337–352, 2010. DOI: 10.1080/00423111003748088.
  • M. Furlan, “Mfeval (version 4.3.1),” MATLAB central file exchange,” [Online]. Available: https://www.mathworks.com/matlabcentral/fileexchange/63618-mfeval. Accessed: Mar. 12, 2021.
  • Y. Hua, Z. Zhao, R. Li, X. Chen, Z. Liu and H. Zhang, “Deep learning with long short-term memory for time series prediction,” IEEE Commun. Mag., vol. 57, no. 6, pp. 114–119, 2019. DOI: 10.1109/MCOM.2019.1800155.
  • X. Zhang, X. Liang, A. Zhiyuli, S. Zhang, R. Xu and B. Wu, “AT-LSTM: An attention-based LSTM model for financial time series prediction,” IOP Conf. Ser. Mater. Sci. Eng., vol. 569, no. 5, pp. 052037, 2019. DOI: 10.1088/1757-899X/569/5/052037.
  • J. Guo, Z. Lao, M. Hou, C. Li and S. Zhang, “Mechanical fault time series prediction by using EFMSAE-LSTM neural network,” Measurement, vol. 173, pp. 108566, 2021. DOI: 10.1016/j.measurement.2020.108566.
  • H. Xie, L. Zhang and C. P. Lim, “Evolving CNN-LSTM models for time series prediction using enhanced grey wolf optimizer,” IEEE Access, vol. 8, pp. 161519–161541, 2020. DOI: 10.1109/ACCESS.2020.3021527.
  • J. Wang, W. Jiang, Z. Li and Y. Lu, “A new multi-scale sliding window LSTM framework (MSSW-LSTM): A case study for GNSS time-series prediction,” Remote Sens., vol. 13, no. 16, pp. 3328, 2021. DOI: 10.3390/rs13163328.
  • S. Karasu and A. Altan, “Crude oil time series prediction model based on LSTM network with chaotic Henry gas solubility optimization,” Energy, vol. 242, pp. 122964, 2022. DOI: 10.1016/j.energy.2021.122964.
  • R. K. Pathan, M. Biswas and M. U. Khandaker, “Time series prediction of COVID-19 by mutation rate analysis using recurrent neural network-based LSTM model,” Chaos Solitons Fractals, vol. 138, pp. 110018, 2020. DOI: 10.1016/j.chaos.2020.110018.
  • L. Chen, Y. Chi, Y. Guan and J. Fan, “A hybrid attention-based EMD-LSTM model for financial time series prediction,” in 2019 2nd international conference on artificial intelligence and big data (ICAIBD), Chengdu, China: IEEE, May 25, 2019, pp. 113-118. DOI: 10.1109/icaibd.2019.8837038.
  • Q. Zhaowei, L. Haitao, L. Zhihui and Z. Tao, “Short-term traffic flow forecasting method with MB-LSTM hybrid network,” IEEE Trans. Intell. Transp. Syst., vol. 23, no. 1, pp. 225-235, 2020. DOI: 10.1109/tits.2020.3009725.
  • S. Shin, S. Lee, M. Kim, J. Park and K. Min, “Deep learning procedure for knock, performance and emission prediction at steady-state condition of a gasoline engine,” Proc. Inst. Mech. Eng. D J. Automob. Eng., vol. 234, no. 14, pp. 3347–3361, 2020. DOI: 10.1177/0954407020932690.
  • S. Saraeian, B. Shirazi and H. Motameni, “Optimal autonomous architecture for uncertain processes management,” Inf. Sci., vol. 501, pp. 84–99, 2019. DOI: 10.1016/j.ins.2019.05.095.
  • S. Bhandari, “Landing a spaceship with Koopman operator theory and model predictive control,” Master thesis, Dept. Inform, TU Munich., München, DE, 2021.
  • L. Xiong, W. Han and Z. Yu, “Adaptive sliding mode pressure control for an electro-hydraulic brake system via desired-state and integral-antiwindup compensation,” Mechatronics, vol. 68, pp. 102359, 2020. DOI: 10.1016/j.mechatronics.2020.102359.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.