Publication Cover
Numerical Heat Transfer, Part B: Fundamentals
An International Journal of Computation and Methodology
Volume 85, 2024 - Issue 5
26
Views
0
CrossRef citations to date
0
Altmetric
Articles

Second law analysis on cross flow of hybrid nanoliquid in a Darcy–Forchheimer medium with thermal radiative flow

, , , &
Pages 500-522 | Received 11 Apr 2023, Accepted 03 Aug 2023, Published online: 04 Sep 2023

References

  • S. U. S. Choi, “Enhancing thermal conductivity of fluids with nanoparticles,” ASME Pub., vol. 231, pp. 99–106, 1995.
  • C. Sulochana, S. P. Samrat, and N. Sandeep, “Boundary layer analysis of an incessant 4. moving needle in MHD radiative nanofluid with Joule heating,” Int. J. Mech. Sci., vol. 128–129, pp. 326–331, 2017.
  • S. Mosayebidorcheh and M. Hatami, “Analytical investigation of peristaltic nanofluid 7. Flow and heat transfer in an asymmetric wavy wall channel (part II: divergent channel),” Int. J. Heat Mass Transf., vol. 126, pp. 800–808, 2018. DOI: 10.1016/j.ijheatmasstransfer.2018.05.077.
  • B. J. Gireesha, B. Mahanthesh, G. T. Thammanna, and P. B. Sampath Kumar, “Hall effects 10. on dusty nanofluid two-phase transient flow past a stretching sheet using KVL model,” J. Mol. Liq., vol. 256, pp. 139–147, 2018. DOI: 10.1016/j.molliq.2018.01.186.
  • F. Ali, T. Padmavathi, and B. Hemalatha, “Entropy minimization in Darcy Forchheimer on Sutterby nanofluid past a stretching surface with swimming of gyrotactic microorganisms,” Waves Random Complex Media, pp. 1–24, 2022. DOI: 10.1080/17455030.2022.2112635.
  • F. Ali and C. S. Reddy, “Cattaneo–Christov double diffusion theory for MHD cross nanofluid flow towards a vertical stretching sheet with activation energy,” Int. J. Amb. Energ., vol. 43, no. 1, pp. 3924–3933, 2022. DOI: 10.1080/01430750.2020.1852113.
  • V. Puneeth, F. Ali, M. R. Khan, M. S. Anwar, and N. A. Ahmed, “Theoretical analysis of the thermal characteristics of Ree–Eyring nanofluid flowing past a stretching sheet due to bioconvection,” Biomass Conv. Bioref., 2022. DOI: 10.1007/s13399-022-02985-1.
  • F. Ali, K. Loganathan, S. Eswaramoorthi, K. Prabu, A. Zaib, and D. K. Chaudhary,  “Heat transfer analysis on carboxymethyl cellulose water-based cross hybrid nanofluid flow with entropy generation,” Nanomaterials, Article ID 5252918.
  • F. Ali, M. M. Rahman, K. Al-Farhany, et al., Irreversibility analysis of cross fluid past a stretchable vertical sheet with mixture of carboxymethyl cellulose water based hybrid nanofluid,” Alex. Eng. J., vol. 64, pp. 107–118, 2023. DOI: 10.1016/j.aej.2022.08.037.
  • S. Suresh, K. P. Venkitaraj, P. Selvakumar, and M. Chandrasekar, “Effect of Al2O3–Cu/water hybrid nanofluid in heat transfer,” Exp. Therm. Fluid Sci., vol. 38, pp. 54–60, 2012. DOI: 10.1016/j.expthermflusci.2011.11.007.
  • S. A. Devi and S. S. U. Devi, “Numerical investigation of hydromagnetic hybrid Cu–Al2O3/water nanofluid flow over a permeable stretching sheet with suction,” Int. J. Nonlin. Sci. Numer. Simul., vol. 17, no. 5, pp. 249–257, 2016. DOI: 10.1515/ijnsns-2016-0037.
  • S. S. U. Devi and S. A. Devi, “Heat transfer enhancement of Cu–Al2O3–water hybrid nanofluid flow over a stretching sheet,” J. Niger. Math. Soc., vol. 36, pp. 419–433, 2017.
  • T. Tayebi and A. J. Chamkha, “Free convection enhancement in an annulus between horizontal confocal elliptical cylinders using hybrid nanofluids,” Numer. Heat Transf. Appl., vol. 70, no. 10, pp. 1141–1156, 2016. DOI: 10.1080/10407782.2016.1230423.
  • S. Ghadikolaei, M. Yassari, H. Sadeghi, K. Hosseinzadeh, and D. D. Ganji, “Investigation on thermophysical properties of TiO2–Cu/H2O hybrid nanofluid transport dependent on shape factor in MHD stagnation point flow,” Powder Technol., vol. 322, pp. 428–438, 2017. DOI: 10.1016/j.powtec.2017.09.006.
  • T. Hayat, S. Nadeem, and A. U. Khan, “Rotating flow of Ag–CuO/H2O hybrid nanofluid with radiation and partial slip boundary effects,” Eur. Phys. J. E. Soft Matter., vol. 41, no. 6, pp. 75, 2018. DOI: 10.1140/epje/i2018-11682-y.
  • M. Yousefi, S. Dinarvand, M. E. Yazdi, and I. Pop, “Stagnation-point flow of an aqueous titania–copper hybrid nanofluid toward wavy cylinder,” HFF, vol. 28, no. 7, pp. 1716–1735, 2018. DOI: 10.1108/HFF-01-2018-0009.
  • M. Subhani and S. Nadeem, “Numerical analysis of micropolar hybrid nanofluid,” Appl. Nanosci., vol. 9, no. 4, pp. 447–459, 2019. DOI: 10.1007/s13204-018-0926-2.
  • S. S. Ghadikolaei, M. Yassari, H. Sadeghi, K. Hosseinzadeh, and D. D. Ganji, “Investigation on thermophysical properties of TiO2–Cu/H2O hybrid nanofluid transport dependent on shape factor in MHD stagnation point flow,” Powder. Technol., vol. 322, pp. 428–438, 2017. DOI: 10.1016/j.powtec.2017.09.006.
  • M. Nawaz, U. Nazir, S. O. Alharbi and Y. Elmasry, “Computational study on transport of thermal energy and mass species in power law rheological fluid with hybrid nanostructures in the presence of chemical reaction,” Int. Commun. Heat Mass Trans., vol. 120, pp. 105022, 2021. DOI: 10.1016/j.icheatmasstransfer.2020.105022.
  • H. Esfe, M. A. Alirezaie, and M. Rejvani, “An applicable study on the thermal conductivity of SWCNT–MgO hybrid nanofluid and price-performance analysis for energy management,” Appl. Therm. Eng., vol. 111, pp. 1202–1210, 2017. DOI: 10.1016/j.applthermaleng.2016.09.091.
  • M. M. Cross, “Rheology of non-Newtonian fluids: a new flow equation for pseudoplastic systems,” J. Colloid Sci., vol. 20, no. 5, pp. 417–437, 1965. DOI: 10.1016/0095-8522(65)90022-X.
  • R. Ponalagusamy, R. T. Selvi, and A. K. Banerjee, “Mathematical model of pulsatile flow of non-Newtonian fluid in tubes of varying cross-sections and its implications to blood flow,” J. Franklin Inst., vol. 349, no. 5, pp. 1681–1698, 2012. DOI: 10.1016/j.jfranklin.2012.02.001.
  • A. R. Haghighi, N. Pirhadi, and M. Shahbazi Asl, “A mathematical modeling for the study of blood flow as a cross fluid through a tapered artery,” J. New Res. Math., vol. 5, no. 20, pp. 15–30, 2019.
  • M. Nazeer, “Numerical and perturbation solutions of cross flow of an Eyring–Powell fluid,” SN Appl. Sci., vol. 3, no. 2, pp. 1–11, 2021. DOI: 10.1007/s42452-021-04173-8.
  • Z. Sabir, A. Imran, M. Umar, M. Zeb, M. Shoaib, and M. A. Z. Raja, “A numerical approach for two-dimensional Sutterby fluid flow bounded at a stagnation point with an inclined magnetic field and thermal radiation impacts,” Therm. Sci., vol. 186, 2020.
  • M. I. Khan, T. Hayat, M. I. Khan, and A. Alsaedi, “Activation energy impact in nonlinear radiative stagnation point flow of cross nanofluid,” Int. Commun. Heat Mass Transf., vol. 91, pp. 216–224, 2018. DOI: 10.1016/j.icheatmasstransfer.2017.11.001.
  • L. Yao, A. Grishaev, G. Cornilescu, and A. Bax, “The impact of hydrogen bonding on amide 1H chemical shift anisotropy studied by cross-correlated relaxation and liquid crystal NMR spectroscopy,” J. Am. Chem. Soc., vol. 132, no. 31, pp. 10866–10875, 2010. DOI: 10.1021/ja103629e.
  • R. P. Sharma and S. R. Mishra, “Effect of higher order chemical reaction on magnetohydrodynamic micropolar fluid flow with internal heat source,” Int. J. Fluid Mech. Res., vol. 47, no. 2, 2020.
  • S. Bilal, M. Sohail, R. Naz, M. Y. Malik, and M. Alghamdi, “Upshot of Ohmically dissipated Darcy Forchheimer slip flow of magnetohydrodynamic Sutterby fluid over radiating linearly stretched surface in view of Cash and Carp method,” Appl. Math. Mech. Engl. Ed., vol. 40, no. 6, pp. 861–876, 2019. DOI: 10.1007/s10483-019-2486-9.
  • M. Muskat, “The flow of homogeneous fluids through porous media,” Soil Sci., vol. 46, no. 2, pp. 169, 1938. DOI: 10.1097/00010694-193808000-00008.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.