Publication Cover
Numerical Heat Transfer, Part B: Fundamentals
An International Journal of Computation and Methodology
Volume 85, 2024 - Issue 5
70
Views
1
CrossRef citations to date
0
Altmetric
Articles

Utilization of Cattaneo–Christov theory to study heat transfer in Powell–Eyring fluid of hyperbolic heat equation

, , ORCID Icon, , &
Pages 523-537 | Received 29 Mar 2023, Accepted 02 Aug 2023, Published online: 04 Sep 2023

References

  • W. Jamshed et al., “A numerical frame work of magnetically driven Powell-Eyring nanofluid using single phase model,” Sci. Rep., vol. 11, no. 1, pp. 16500, 2021. DOI: 10.1038/s41598-021-96040-0.
  • A. Aziz, W. Jamshed, T. Aziz, H. M. Bahaidarah, and K. U. Rehman, “Entropy analysis of Powell–Eyring hybrid nanofluid including effect of linear thermal radiation and viscous dissipation,” J. Therm. Anal. Calorim., vol. 143, no. 2, pp. 1331–1343, 2021. DOI: 10.1007/s10973-020-10210-2.
  • W. Jamshed, W. Al‐Kouz, and N. A. Mohd Nasir, “Computational single phase comparative study of inclined MHD in a Powell–Eyring nanofluid,” Heat Transf., vol. 50, no. 4, pp. 3879–3912, 2021. DOI: 10.1002/htj.22056.
  • A. A. Avramenko, M. M. Kovetskaya, and I. V. Shevchuk, “Self-similar analysis of Eyring-Powell fluid in boundary layer without simplification,” Chin. J. Phys., vol. 75, pp. 28–37, 2022. DOI: 10.1016/j.cjph.2021.10.025.
  • Y. M. Chu, U. Nazir, M. Sohail, M. M. Selim, and J. R. Lee, “Enhancement in thermal energy and solute particles using hybrid nanoparticles by engaging activation energy and chemical reaction over a parabolic surface via finite element approach,” Fractal Fract., vol. 5, no. 3, pp. 119, 2021. DOI: 10.3390/fractalfract5030119.
  • S. Akram, M. Athar, K. Saeed, A. Razia, and T. Muhammad, “Hybridized consequence of thermal and concentration convection on peristaltic transport of magneto Powell–Eyring nanofluids in inclined asymmetric channel,” Math. Methods Appl. Sci., 2021. DOI: 10.1016/j.csite.2021.100965.
  • S. Aziz, N. Ali, I. Ahmad, U. F. Alqsair, and S. U. Khan, “Contributions of nonlinear mixed convection for enhancing the thermal efficiency of Eyring-Powell nanoparticles for periodically accelerated bidirectional flow,” Waves Random Complex Media, pp. 1–20, 2022. DOI: 10.1080/17455030.2021.2022812.
  • V. S. Patil, A. B. Patil, S. Ganesh, P. P. Humane, and N. S. Patil, “Unsteady MHD flow of a nano powell-eyring fluid near stagnation point past a convectively heated stretching sheet in the existence of chemical reaction with thermal radiation,” Mater. Today: Proc., vol. 44, pp. 3767–3776, 2021. DOI: 10.1016/j.matpr.2020.11.860.
  • M. Sohail, Y. M. Chu, E. R. El-Zahar, U. Nazir, and T. Naseem, “Contribution of joule heating and viscous dissipation on three dimensional flow of Casson model comprising temperature dependent conductance utilizing shooting method,” Phys. Scr., vol. 96, no. 8, pp. 085208, 2021. DOI: 10.1088/1402-4896/ac00e5.
  • M. Sohail, H. Alrabaiah, and U. Nazir, “Radiative flow of MHD non‐Newtonian fluid by utilizing the updated version of heat flux model under Joule heating,” Heat Transf., vol. 50, no. 4, pp. 3407–3425, 2021. DOI: 10.1002/htj.22034.
  • H. Waqas, M. Imran, T. Muhammad, S. M. Sait, and R. Ellahi, “Numerical investigation on bioconvection flow of Oldroyd-B nanofluid with nonlinear thermal radiation and motile microorganisms over rotating disk,” J. Therm. Anal. Calorim., vol. 145, no. 2, pp. 523–539, 2021. DOI: 10.1007/s10973-020-09728-2.
  • Y. Q. Song et al., “Applications of modified Darcy law and nonlinear thermal radiation in bioconvection flow of micropolar nanofluid over an off centered rotating disk,” Alex. Eng. J., vol. 60, no. 5, pp. 4607–4618, 2021. DOI: 10.1016/j.aej.2021.03.053.
  • M. Imran, U. Farooq, H. Waqas, A. E. Anqi, and M. R. Safaei, “Numerical performance of thermal conductivity in Bioconvection flow of cross nanofluid containing swimming microorganisms over a cylinder with melting phenomenon,” Case Stud. Therm. Eng., vol. 26, pp. 101181, 2021. DOI: 10.1038/s41598-021-95587-2.
  • J. Wu, F. Wu, T. Zhao, M. Antezza, and X. Wu, “Dual-band nonreciprocal thermal radiation by coupling optical Tamm states in magnetophotonic multilayers,” Int. J. Therm. Sci., vol. 175, pp. 107457, 2022. DOI: 10.1016/j.ijthermalsci.2022.107457.
  • C. L. Zhou, X. H. Wu, Y. Zhang, and H. L. Yi, “Super-planckian thermal radiation in borophene sheets,” Int. J. Heat Mass Transf., vol. 183, pp. 122140, 2022. DOI: 10.1016/j.ijheatmasstransfer.2021.122140.
  • U. Khan et al., “Insights into the dynamics of blood conveying gold nanoparticles on a curved surface when suction, thermal radiation, and Lorentz force are significant: The case of Non-Newtonian Williamson fluid,” Math. Comput. Simul., vol. 193, pp. 250–268, 2022. DOI: 10.1016/j.matcom.2021.10.014.
  • M. Imran et al., “Computational analysis of nanoparticle shapes on hybrid nanofluid flow due to flat horizontal plate via solar collector,” Nanomaterials, vol. 12, no. 4, pp. 663, 2022. DOI: 10.3390/nano12040663.
  • M. Imran, T. Kamran, S. A. Khan, T. Muhammad, and H. Waqas, “Physical attributes of bio-convection in nanofluid flow through a paraboloid of revolution on horizontal surface with motile microorganisms,” Int. Commun. Heat Mass Transf., vol. 133, pp. 105947, 2022. DOI: 10.1016/j.icheatmasstransfer.2022.105947.
  • U. Farooq, H. Waqas, T. Muhammad, M. Imran, and A. S. Alshomrani, “Computation of nonlinear thermal radiation in magnetized nanofluid flow with entropy generation,” Appl. Math. Comput., vol. 423, pp. 126900, 2022. DOI: 10.1016/j.amc.2021.126900.
  • B. V. Pushpa, M. Sankar, and F. Mebarek-Oudina, “Buoyant convective flow and heat dissipation of cu–h2o nanoliquids in an annulus through a thin baffle,” J Nanofluids, vol. 10, no. 2, pp. 292–304, 2021. DOI: 10.1166/jon.2021.1782.
  • S. Marzougui, F. Mebarek-Oudina, M. Magherbi, and A. Mchirgui, “Entropy generation and heat transport of Cu–water nanoliquid in porous lid-driven cavity through magnetic field,” HFF., vol. 32, no. 6, pp. 2047–2069, 2022. DOI: 10.1108/HFF-04-2021-0288.
  • A. Shafiq, F. Mebarek-Oudina, T. N. Sindhu, and A. Abidi, “A study of dual stratification on stagnation point Walters’ B nanofluid flow via radiative Riga plate: A statistical approach,” Eur. Phys. J. Plus, vol. 136, no. 4, pp. 1–24, 2021. DOI: 10.1140/epjp/s13360-021-01394-z.
  • N.S. Shashikumar, B. J. Gireesha, B. Mahanthesh, and B. C. Prasannakumara, “Brinkman-Forchheimer flow of SWCNT and MWCNT magneto-nanoliquids in a microchannel with multiple slips and Joule heating aspects,” MMMS., vol. 14, no. 4, pp. 769–786, 2018. DOI: 10.1108/MMMS-01-2018-0005.
  • M. Madhu, N. S. Shashikumar, B. J. Gireesha, and N. Kishan, “Second law analysis of Powell–Eyring fluid flow through an inclined microchannel with thermal radiation,” Phys. Scr., vol. 94, no. 12, pp. 125205, 2019. DOI: 10.1088/1402-4896/ab32b7.
  • B. C. Prasannakumara, N. S. Shashikumar, and P. Venkatesh, “Boundary layer flow and heat transfer of fluid particle suspension with nanoparticles over a nonlinear stretching sheet embedded in a porous medium,” Nonlinear Eng., vol. 6, no. 3, pp. 179–190, 2017. DOI: 10.1515/nleng-2017-0004.
  • M. Madhu, N. S. Shashikumar, B. J. Gireesha, and N. Kishan, “Second law analysis of MHD third-grade fluid flow through the microchannel,” Pramana – J. Phys., vol. 95, no. 1, pp. 1–10, 2021. DOI: 10.1007/s12043-020-02037-1.
  • N. S. Shashikumar, M. Macha, B. J. Gireesha, and N. Kishan, “Finite element analysis of micropolar nanofluid flow through an inclined microchannel with thermal radiation,” MMMS., vol. 16, no. 6, pp. 1521–1538, 2020. DOI: 10.1108/MMMS-11-2019-0198.
  • N. S. Shashikumar, M. Madhu, S. Sindhu, B. J. Gireesha, and N. Kishan, “Thermal analysis of MHD Williamson fluid flow through a microchannel,” Int. Commun. Heat Mass Transf., vol. 127, pp. 105582, 2021. DOI: 10.1016/j.icheatmasstransfer.2021.105582.
  • B. J. Gireesha, B. C. Prasannakumara, M. Umeshaiah, and N. S. Shashikumar, “Three dimensional boundary layer flow of MHD Maxwell nanofluid over a non-linearly stretching sheet with nonlinear thermal radiation,” J. Appl. Nonlinear Dyn., vol. 10, no. 02, pp. 263–277, 2021. DOI: 10.1007/s10483-015-1948-6.
  • B. C. Prasannakumara and N. S. Shashikumar, “Boundary layer flow and heat transfer of nanofluid with fluid particle suspension over a nonlinear stretching sheet in the presence of thermal radiation,” J Nanofluids, vol. 6, no. 3, pp. 487–495, 2017. DOI: 10.1166/jon.2017.1346.
  • N. S. Shashikumar, S. Sindhu, M. Madhu, and B. J. Gireesha, “Second law analysis of MHD Carreau fluid flow through a microchannel with thermal radiation,” Waves Random Complex Media, pp. 1–25, 2022. DOI: 10.1080/17455030.2022.2060532.
  • M. Madhu, N. S. Shashikumar, B. J. Gireesha, and N. Kishan, “Entropy generation analysis of MHD micropolar nanofluid flow through a micro channel,” DNC., vol. 11, no. 4, pp. 569–582, 2022. DOI: 10.5890/DNC.2022.12.001.
  • M. Madhu, N. S. Shashikumar, K. Thriveni, B. J. Gireesha, and B. Mahanthesh, “Irreversibility analysis of the MHD Williamson fluid flow through a microchannel with thermal radiation,” Waves Random Complex Media, pp. 1–23, 2022. DOI: 10.1080/17455030.2022.2111473.
  • N. S. Shashikumar et al., “Entropy generation analysis of radiative Williamson fluid flow in an inclined microchannel with multiple slip and convective heating boundary effects,” Proc. Institution Mech. Eng. Part E: J. Process Mech. Eng., pp. 095440892110498, 2021. DOI: 10.1177/09544089211049863.
  • B. Mahanthesh, N. S. Shashikumar, and G. Lorenzini, “Heat transfer enhancement due to nanoparticles, magnetic field, thermal and exponential space-dependent heat source aspects in nanoliquid flow past a stretchable spinning disk,” J. Therm. Anal. Calorim., vol. 145, no. 6, pp. 3339–3347, 2021. DOI: 10.1007/s10973-020-09927-x.
  • B. C. Prasannakumara, N. S. Shashikumar, and M. Archana, “Three-dimensional boundary layer flow and heat transfer of a dusty fluid towards a stretching sheet with convective boundary conditions,” J. Comput. Appl. Res. Mech. Eng., vol. 8, no. 1, pp. 25–38, 2018. DOI: 10.1515/nleng-2018-0008.
  • A. Mushtaq, M. Mustafa, T. Hayat, M. Rahi, and A. Alsaedi, “Exponentially stretching sheet in a Powell–Eyring fluid: Numerical and series solutions,” Zeitschrift Für Naturforschung A, vol. 68, no. 12, pp. 791–798, 2013. DOI: 10.5560/zna.2013-0063.
  • K. Guedri et al., “Thermal aspects of magnetically driven micro-rotational nanofluid configured by exponential radiating surface,” Case Stud. Therm. Eng., vol. 39, pp. 102322, 2022. DOI: 10.1016/j.csite.2022.102322.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.