Publication Cover
Numerical Heat Transfer, Part B: Fundamentals
An International Journal of Computation and Methodology
Volume 85, 2024 - Issue 5
32
Views
1
CrossRef citations to date
0
Altmetric
Articles

A theoretical analysis of the electrically conducting blood-based Ferrofluid flow through a stretching cylinder with viscous dissipation

, , , &
Pages 538-553 | Received 14 Apr 2023, Accepted 30 Jul 2023, Published online: 30 Aug 2023

References

  • S. Choi and J. Eastman, “Enhancing thermal conductivity of fluids with nanoparticles”, 1995.
  • Z. Shah, et al., “Micropolar gold blood nanofluid flow and radiative heat transfer between permeable channels,” Comput. Methods Programs Biomed., vol. 186, pp. 105197, 2020. DOI: 10.1016/j.cmpb.2019.105197.
  • H. Alkasasbeh, “Mathematical Modeling of MHD Flow of Hybrid Micropolar Ferrofluids About a Solid Sphere,” Front. Heat. Mass Transf., vol. 18, 2022.
  • L. Zhang, M. M. Bhatti, E. E. Michaelides, M. Marin and R. Ellahi, “Hybrid nanofluid flow towards an elastic surface with tantalum and nickel nanoparticles, under the influence of an induced magnetic field,” Eur. Phys. J. Spec. Top., vol. 231, no. 3, pp. 521–533, 2022. DOI: 10.1140/epjs/s11734-021-00409-1.
  • H. T. Alkasasbeh, et al., “Computational modeling of hybrid micropolar nanofluid flow over a solid sphere,” J. Magn. Magn. Mater., vol. 569, pp. 170444, 2023. DOI: 10.1016/j.jmmm.2023.170444.
  • Haroon Ur, Rasheed, Waris, Khan, Ilyas, Khan, Nawa, Alshammari, Nawaf, Hamadneh, Zeeshan, “Numerical computation of 3D Brownian motion of thin film nanofluid flow of convective heat transfer over a stretchable rotating surface,” Sci. Rep., vol. 12, no. 1, pp.2708, 2022. DOI: 10.1038/s41598-022-06622-9.
  • H. Alkasasbeh, “Numerical solution of heat transfer flow of casson hybrid nanofluid over vertical stretching sheet with magnetic field effect,” CFD Lett., vol. 14, pp. 39–52, 2022.
  • M. Yaseen, S. K. Rawat and M. Kumar, “Hybrid nanofluid (MoS2–SiO2/water) flow with viscous dissipation and Ohmic heating on an irregular variably thick convex/concave‐shaped sheet in a porous medium,” Heat Trans., vol. 51, no. 1, pp. 789–817, 2022. DOI: 10.1002/htj.22330.
  • K. Vajravelu, K. V. Prasad, C.-O. Ng and H. Vaidya, “MHD squeeze flow and heat transfer of a nanofluid between parallel disks with variable fluid properties and transpiration,” Int. J. Mech. Mater. Eng., vol. 12, no. 1, pp. 1–14, 2017. DOI: 10.1186/s40712-017-0076-4.
  • K. V. Prasad, K. Vajravelu and H. Vaidya, “Hall effect on MHD flow and heat transfer over a stretching sheet with variable thickness,” Int. J. Comput. Methods Eng. Sci. Mech., vol. 17, no. 4, pp. 288–297, 2016. DOI: 10.1080/15502287.2016.1209795.
  • H. Upreti, N. Joshi, A. K. Pandey and S. K. Rawat, “Assessment of convective heat transfer in Sisko fluid flow via stretching surface due to viscous dissipation and suction,” Nanosci. Technol. An Int. J., vol. 13 2022.
  • I. Waini, U. Khan, A. Zaib, A. Ishak and I. Pop, “Thermophoresis particle deposition of CoFe2O4-TiO2 hybrid nanoparticles on micropolar flow through a moving flat plate with viscous dissipation effects,” Int. J. Numer. Methods Heat. Fluid Flow, 2022.
  • K. Sharma, S. Kumar and N. Vijay, “Numerical simulation of MHD heat and mass transfer past a moving rotating disk with viscous dissipation and ohmic heating,” Multidiscip. Model. Mater. Struct., 2022.
  • G. Manjunatha, C. Rajashekhar, H. Vaidya, K. V. Prasad, O. D. Makinde and J. U. Viharika, “Impact of variable transport properties and slip effects on MHD Jeffrey fluid flow through channel,” Arab. J. Sci. Eng., vol. 45, no. 1, pp. 417–428, 2020. DOI: 10.1007/s13369-019-04266-y.
  • J. Alzahrani, H. Vaidya, K. V. Prasad, C. Rajashekhar, D. L. Mahendra and I. Tlili, “Micro-polar fluid flow over a unique form of vertical stretching sheet: special emphasis to temperature-dependent properties,” Case Stud. Therm. Eng., vol. 34, pp. 102037, 2022. DOI: 10.1016/j.csite.2022.102037.
  • C. Rajashekhar, G. Manjunatha, K. V. Prasad, B. B. Divya and H. Vaidya, “Peristaltic transport of two-layered blood flow using Herschel–Bulkley Model,” Cogent Eng., vol. 5, no. 1, pp. 1495592, 2018. DOI: 10.1080/23311916.2018.1495592.
  • A. Alshehri and Z. Shah, “Computational analysis of viscous dissipation and Darcy-Forchheimer porous medium on radioactive hybrid nanofluid,” Case Stud. Therm. Eng., vol. 30, pp. 101728, 2022. DOI: 10.1016/j.csite.2021.101728.
  • W.-M. Qian, et al., “Mathematical modeling and MHD flow of micropolar fluid toward an exponential curved surface: heat analysis via ohmic heating and heat source/sink,” Arab. J. Sci. Eng., vol. 47, no. 1, pp. 867–878, 2022. DOI: 10.1007/s13369-021-05673-w.
  • K. Muhammad, T. Hayat and B. Ahmad, “Joule heating in squeezed flow of hybrid nanomaterial via FDM with Cattaneo–Christov (C–C) heat flux,” Int. J. Numer. Methods Heat Fluid Flow, 2022.
  • H. Hanif and S. Shafie, A.C.-W. in R. and Complex and undefined., “Effect of Ohmic heating on magnetohydrodynamic flow with variable pressure gradient”: a computational approach,” Taylor Fr., 2022.
  • M. Awais, M. Bibi, A. Ali, M. Malik, K. Nisar, W.J.-S. Reports., et al., “Numerical analysis of MHD axisymmetric rotating Bodewadt rheology under viscous dissipation and ohmic heating effects,” Springer.
  • M. Bilal, et al., “A novel nonlinear diffusion model of magneto-micropolar fluid comprising Joule heating and velocity slip effects,” Waves Random Complex Media, pp. 1–17, 2022. DOI: 10.1080/17455030.2022.2079761.
  • A. Asghar, T. Y. Ying and K. Zaimi, “Two-Dimensional Magnetized Mixed Convection Hybrid Nanofluid Over a Vertical Exponentially Shrinking Sheet by Thermal Radiation, Joule Heating, Velocity and Thermal Slip Conditions,” J. Adv. Res. Fluid Mech. Therm. Sci., vol. 95, pp. 159–179, 2022.
  • F. S. Bayones, A. M. Abd-Alla and E. N. Thabet, “Magnetized dissipative Soret effect on nonlinear radiative Maxwell nanofluid flow with porosity, chemical reaction and Joule heating,” Waves Random Complex Media, pp. 1–19, 2022. DOI: 10.1080/17455030.2021.2019352.
  • V. S. Sajja, R. Gadamsetty, P. Muthu, M. J. Babu and I. L. Animasaun, “Significance of Lorentz Force and Viscous Dissipation on the Dynamics of Propylene Glycol: water Subject to Joule Heating Conveying Paraffin Wax and Sand Nanoparticles Over an Object with a Variable Thickness,” Arab. J. Sci. Eng., vol. 47, no. 12, pp. 15505–15518, 2022. DOI: 10.1007/s13369-022-06658-z.
  • J. Buongiorno, “Convective Transport in Nanofluids,” J. Heat Transfer., vol. 128, no. 3, pp. 240–250, 2006. DOI: 10.1115/1.2150834.
  • S. Nadeem, et al., “Numerical computations for Buongiorno nano fluid model on the boundary layer flow of viscoelastic fluid towards a nonlinear stretching sheet,” Alexandria Eng. J., vol. 61, no. 2, pp. 1769–1778, 2022. DOI: 10.1016/j.aej.2021.11.013.
  • R. Safdar, I. Gulzar, M. Jawad, W. Jamshed, F. Shahzad and M. R. Eid, “Buoyancy force and Arrhenius energy impacts on Buongiorno electromagnetic nanofluid flow containing gyrotactic microorganism,” Proc. Instit. Mech. Eng. Part C J. Mech. Eng. Sci., vol. 236, no. 17, pp. 9459–9471, 2022. DOI: 10.1177/09544062221095693.
  • W. Owhaib and W. Al-Kouz, “Three-dimensional numerical analysis of flow and heat transfer of bi-directional stretched nanofluid film exposed to an exponential heat generation using modified Buongiorno model,” Sci. Rep., vol. 12, no. 1, pp. 10060, 2022. DOI: 10.1038/s41598-022-13351-6.
  • R. J. P. Gowda, A. Rauf, R. Naveen Kumar, B. C. Prasannakumara and S. A. Shehzad, “Slip flow of Casson–Maxwell nanofluid confined through stretchable disks,” Indian J. Phys., vol. 96, no. 7, pp. 2041–2049, 2022. DOI: 10.1007/s12648-021-02153-7.
  • L. Anitha and B. J. Gireesha, “Buongiorno model analysis on Carreau fluid flow in a microchannel with Non-linear thermal radiation impact and irreversibility,” Int. J. Model. Simulat., pp. 1–14, 2022. DOI: 10.1080/02286203.2022.2130091.
  • H. Vaidya, K. V Prasad, M.I. Khan, F. Mebarek-Oudina, I. Tlili, C. Rajashekhar et al., “Combined effects of chemical reaction and variable thermal conductivity on MHD peristaltic flow of Phan-Thien-Tanner liquid through inclined channel”, Case Stud. Therm. Eng. 36, pp. 102214, 2022. DOI: 10.1016/j.csite.2022.102214.
  • K. Raghunath, N. Gulle, R. R. Vaddemani and O. Mopuri, “Unsteady MHD fluid flow past an inclined vertical porous plate in the presence of chemical reaction with aligned magnetic field, radiation, and Soret effects,” Heat Trans., vol. 51, no. 3, pp. 2742–2760, 2022. DOI: 10.1002/htj.22423.
  • H. Vaidya, C. Rajashekhar, G. Manjunatha and K. V. Prasad, “Peristaltic mechanism of a Rabinowitsch fluid in an inclined channel with complaint wall and variable liquid properties,” J. Braz. Soc. Mech. Sci. Eng., vol. 41, pp. 1–14, 2019.
  • J. Cui, R. Razzaq, U. Farooq, W. A. Khan, F. B. Farooq and T. Muhammad, “Impact of non-similar modeling for forced convection analysis of nano-fluid flow over stretching sheet with chemical reaction and heat generation,” Alexandria Eng. J., vol. 61, no. 6, pp. 4253–4261, 2022. DOI: 10.1016/j.aej.2021.09.045.
  • K. V. Prasad, H. Vaidya, C. Rajashekhar, S. U. Khan, G. Manjunatha and J. U. Viharika, “Slip flow of MHD Casson fluid in an inclined channel with variable transport properties,” Commun. Theor. Phys., vol. 72, no. 9, pp. 095004, 2020. DOI: 10.1088/1572-9494/aba246.
  • M. A. Kumar, Y. D. Reddy, B. S. Goud and V. S. Rao, “An impact on non-Newtonian free convective MHD Casson fluid flow past a vertical porous plate in the existence of Soret, Dufour, and chemical reaction,” Int. J. Ambient Energy, vol. 43, no. 1, pp. 7410–7418, 2022. DOI: 10.1080/01430750.2022.2063381.
  • A. Saeed, E. A. Algehyne, M. S. Aldhabani, A. Dawar, P. Kumam and W. Kumam, “Mixed convective flow of a magnetohydrodynamic Casson fluid through a permeable stretching sheet with first-order chemical reaction,” PLoS One, vol. 17, no. 4, pp. e0265238, 2022. DOI: 10.1371/journal.pone.0265238.
  • K. V. Prasad, K. Vajravelu, H. Vaidya, N. Z. Basha and V. Umesh, “Thermal and species concentration of MHD Casson fluid at a vertical sheet in the presence variable fluid properties,” Ain. Shams Eng. J., vol. 9, no. 4, pp. 1763–1779, 2018. DOI: 10.1016/j.asej.2016.08.017.
  • T. Walelign, E. Haile, T. Kebede and A. Walelgn, “Analytical study of heat and mass transfer in MHD flow of chemically reactive and thermally radiative Casson nanofluid over an inclined stretching cylinder,” J. Phys. Commun., vol. 4, no. 12, pp. 125003, 2020. DOI: 10.1088/2399-6528/abcdba.
  • A. Zeeshan, M. M. Maskeen and O. U. Mehmood, “Hydromagnetic nanofluid flow past a stretching cylinder embedded in non-Darcian Forchheimer porous media,” Neural Comput. Appl., vol. 30, no. 11, pp. 3479–3489, 2018. DOI: 10.1007/s00521-017-2934-7.
  • H. Waqas, S. Ali Khan and T. Muhammad, “Thermal analysis of magnetized flow of AA7072-AA7075/blood-based hybrid nanofluids in a rotating channel,” Alexand. Eng. J., 2021.
  • M. Alghamdi, A. Wakif, T. Thumma, U. Khan, D. Baleanu and G. Rasool, “Significance of variability in magnetic field strength and heat source on the radiative-convective motion of sodium alginate-based nanofluid within a Darcy-Brinkman porous structure bounded vertically by an irregular slender surface,” Case Stud. Therm. Eng., vol. 28, pp. 101428, 2021. DOI: 10.1016/j.csite.2021.101428.
  • T. S. Kumar, “Hybrid nanofluid slip flow and heat transfer over a stretching surface,” Partial Differ. Equations Appl. Math., vol. 4, pp. 100070, 2021. DOI: 10.1016/j.padiff.2021.100070.
  • N. Acharya, S. Maity and P. K. Kundu, “Influence of inclined magnetic field on the flow of condensed nanomaterial over a slippery surface”: the hybrid visualization,” Appl. Nanosci., vol. 10, no. 2, pp. 633–647, 2020. DOI: 10.1007/s13204-019-01123-0.
  • S. Liao, Beyond Perturbation: “Introduction to the Homotopy Analysis Method”, Chapman and Hall/CRC. 2003.
  • S. Liao, “Homotopy analysis method in nonlinear differential equations”, Homotopy Anal. Method Nonlinear Differ. Equations 9783642251, pp. 1–565, 2011.
  • S. Liao, “Advances in the Homotopy Analysis Method”, World Scientific2013.
  • T. Fang, J. Zhang and S. Yao, “Slip MHD viscous flow over a stretching sheet – An exact solution,” Commun. Nonlinear Sci. Numer. Simul., vol. 14, no. 11, pp. 3731–3737, 2009. DOI: 10.1016/j.cnsns.2009.02.012.
  • M. K. Murthy, C. S. K. Raju, V. Nagendramma, S. A. Shehzad and A. J. Chamkha, “Magnetohydrodynamics Boundary Layer Slip Casson Fluid Flow over a Dissipated Stretched Cylinder,” DDF, vol. 393, pp. 73–82, 2019. DOI: 10.4028/www.scientific.net/DDF.393.73.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.