Publication Cover
Numerical Heat Transfer, Part B: Fundamentals
An International Journal of Computation and Methodology
Volume 85, 2024 - Issue 5
62
Views
0
CrossRef citations to date
0
Altmetric
Articles

Numerical analysis of hydromagnetic particulate Reiner-Rivlin fluid flow in an asymmetric non-uniform channel with a heat source

ORCID Icon, &
Pages 554-568 | Received 11 Apr 2023, Accepted 30 Jul 2023, Published online: 04 Sep 2023

References

  • F. H. Oyelami and S. D. Moses, “Unsteady magnetohydrodynamic flow of some non-Newtonian fluids with slip through porous channel,” IJHT, vol. 36, no. 2, pp. 709–713, 2018. DOI: 10.18280/ijht.360237.
  • M. Khan, H. Sardar, M. Gulzar and A. Saleh, “On multiple solutions of non-Newtonian Carreau fluid flow over an inclined shrinking sheet,” Res. Phy., vol. 8, pp. 926–932, 2018. DOI: 10.1016/j.rinp.2018.01.021.
  • Anubrata, Saikia, Amaresh, Dalal, Sukumar, Pati, Shubham, “Thermo-hydraulic transport characteristics of non-Newtonian fluid flows through corrugated channels”, Int. J. Therm. Sci., vol.129, pp 201–208, 2018, DOI: 10.1016/j.ijthermalsci.2018.02.005.
  • M. Bilal and M. Nazeer, “Numerical analysis for the non-Newtonian flow over stratified stretching/shrinking inclined sheet with the aligned magnetic field and nonlinear convection,” Arch. Appl. Mech., vol. 91, no. 3, pp. 949–964, 2021. DOI: 10.1007/s00419-020-01798-w.
  • N. S. Khashi’ie, I. Waini, A. R. M. Kasim, N. A. Zainal, A. Ishak and I. Pop, “Magnetohydrodynamic and viscous dissipation effects on radiative heat transfer of non-Newtonian fluid flow past a nonlinearly shrinking sheet: reiner–Philippoff model,” Alex. Eng. J., vol. 61, no. 10, pp. 7605–7617, 2022. DOI: 10.1016/j.aej.2022.01.014.
  • M. Reiner, “A Mathematical theory of dilatancy,” Am. J. Math., vol. 67, no. 3, pp. 350–362, 1945. DOI: 10.2307/2371950.
  • R. Rivlin, “Hydrodynamics of non-Newtonian fluids,” Nature, vol. 160, no. 4070, pp. 611–611, 1947. DOI: 10.1098/rspa.1948.0044.
  • S. X. Gao and J. P. Hartnett, “Heat transfer behavior of Reiner-Rivlin fluids in rectangular ducts,” Int. J. Heat Mass Transfer, vol. 39, no. 6, pp. 1317–1324, 1996. DOI: 10.1016/0017-9310(95)00041-0.
  • H. A. Attia, “Numerical study of flow and heat transfer in a Reiner-Rivlin fluid on a rotating porous disk,” J. Appl. Mech. Tech. Phys., vol. 46, no. 1, pp. 68–76, 2005. DOI: 10.1007/s10808-005-0039-z.
  • K. B. Lawrence, “Steady flow of a Reiner-Rivlin fluid between rotating plates,” Phys. Fluids, pp. 103104, 2018. DOI: 10.1063/1.5053833.
  • B. Sahoo and V. S. Igor, “Heat transfer due to revolving flow of Reiner-Rivlin fluid over a stretchable surface,” Therm. Sci. Eng. Prog., vol. 10, pp. 327–336, 2019. DOI: 10.1016/j.tsep.2019.03.004.
  • S. M. R. S. Naqvi, H. M. Kin, T. Muhammed, M. Fouad and M. Z. Ullah, “Numerical study for slip flow of Reiner-Rivlin nanofluid due to rotating disk,” Int. Commun. Heat Mass Transfer, vol. 116, pp. 104643, 2020. DOI: 10.1016/j.icheatmasstransfer.2020.104643.
  • S. Abdal, A. Mariam, B. Ali, S. Younas, L. Ali and D. Habib, “Implications of bio convection and activation energy on Reiner-Rivlin nanofluid transportation over a disk rotation with partial slip,” Chin. J. Phys., vol. 73, pp. 672–683, 2021. DOI: 10.1016/j.cjph.2021.07.022.
  • S. A. Khan, T. Hayat and A. Alsaedi, “Irreversibility analysis in hydromagnetic Reiner-Rivlin nanofluid with quartic autocatalytic chemical reactions,” Int. Commun. Heat Mass Transfer, vol. 130, pp. 105797, 2022. DOI: 10.1016/j.icheatmasstransfer.2021.105797.
  • M. A. Sadiq and T. Hayat, “Entropy optimized flow Reiner-Rivlin nanofluid with chemical reaction subject to stretchable rotating disk,” Alex. Eng. J., vol. 61, no. 5, pp. 3501–3510, 2022. DOI: 10.1016/j.aej.2021.08.069.
  • R. M. Terril, “Slow Laminar Flow in a Converging or Diverging Channel with Suction at One Wall and Blowing at the Other Wall,” ZAMP, vol. 16, pp. 306–308, 1965. DOI: 10.1007/BF01587656.
  • Yilmaz, A. Akyatan and E. Senocak, “Slow flow of a Reiner-Rivlin fluid in a converging or diverging channel with suction and injection,” Tr. J. Eng. Enviorn. Sci., vol. 27, pp. 179–183, 1998.
  • S. S. Motsa, P. Sibanda, G. T. Marewo and S. Shateyi, “A note on improved Homotopy Analysis Method for solving Jeffery-Hamel flow,” Math. Probl. Eng., vol. 2010, pp. 1–11, 2010. DOI: 10.1155/2010/359297.
  • M. Esmaeilpour, N. Roshan, R. Negar and D. D. Ganji, “Analytical method in solving flow of viscoelastic fluid in a porous converging channel,” Int. J. Math. Math. Sci., vol. 2011, pp. 1–11, 2011. DOI: 10.1155/2011/257903.
  • R. S. Herbst, C. Harly and K. R. Rajagopal, “Reversal of flow of a non-Newtonian fluid in an expanding channel,” Int. J. Non-Linear Mech., vol. 154, pp. 104445, 2023. DOI: 10.1016/j.ijnonlinmec.2023.104445.
  • Muhammad, Hafeez, Masood, Khan, Hashim, “Jeffrey-Hamel flow of hybrid nanofluids in convergent and divergent channels with heat transfer characteristics”, Appl. Nanosci., 12, vol 10, pp 5459–5468, 2020, DOI: 10.1007/s13204-020-01427-6.
  • M. Z. Ullah, D. Abuzaid, M. Asma and A. Bariq, “Couple stress hybrid nanofluid flow through a converging and diverging channel,” J. Nano Mater., vol. 2021, pp. 1–13, 2021. DOI: 10.1155/2021/2355258.
  • B. Mallikarjuna, S. Ramprasad, S. Shezahad and R. Ayyaz, “Numerical and regression analysis of Cu nanoparticles flows in distinct base fluids through a symmetric non-uniform channel,” Eur. Phys. J. Spec. Top., vol. 231, no. 3, pp. 557–569, 2022. DOI: 10.1140/epjs/s11734-021-00400-w.
  • S. Ramprasad, S. H. C. V. Subba Bhatta, B. Mallikarjuna and D. Srinivasacharya, “Two-phase particulate suspension flow in convergent and divergent channels: a numerical model,” Int. J. Appl. Comput. Math., vol. 3, no. S1, pp. 843–858, 2017. pp DOI: 10.1007/s40819-017-0386-5.
  • S. Siddiqa, N. Begum, M. A. Hossain, M. Shoaib and R. S. Reddy Gorla, “Radiative heat transfer analysis of non-Newtonian dusty Casson fluid along a complex wavy surface,” Num. Heat Trans., Part A, vol. 73, no. 4, pp. 209–221, 2018. DOI: 10.1080/10407782.2017.1421741.
  • F. M. Hady, A. Mahdy, R. A. Mohammed, S. E. Ahmed and O. A. Zaid, “Unsteady natural convection flow of a dusty non-Newtonian Casson fluid along a vertical wavy plate: numerical approach,” J Braz. Soc. Mech. Sci. Eng., vol. 41, no. 11, pp. 472, 2019. DOI: 10.1007/s40430-019-1966-6.
  • R. Ponalagusamy and M. Ramakrishna, “Particle-fluid two phase modelling of electro-magneto hydrodynamic pulsatile flow of Jeffery fluid in a constricted tube under periodic body acceleration,” Eur. J. Mech./B Fluids, vol. 81, pp. 76–92, 2020. DOI: 10.1016/j.euromechflu.2020.01.007.
  • H. A. Nabwey and A. Mahdy, “Numerical approach of micropolar dust-particles natural convection fluid flow due to a permeable cone with nonlinear temperature,” Alex. Eng. J., vol. 60, no. 1, pp. 1739–1749, 2021. DOI: 10.1016/j.aej.2020.11.023.
  • B. Mallikarjuna, S. H. C. V. SubbaBhatta and S. Ramprasad, “Velocity and thermal effects on MHD convective radiative two-phase flows in an asymmetric non-uniform channel,” Prop. Power Res., vol. 10, no. 2, pp. 169–179, 2021. DOI: 10.1016/j.jppr.2021.04.002.
  • S. Ramprasad, B. Mallikarjuna and S. H. C. V. Subba Bhatta, “Numerical and linear regression analysis on MHD two‐phase flow in an asymmetric non-uniform channel,” Heat Transfer, vol. 50, no. 7, pp. 7100–7119, 2021. DOI: 10.1002/htj.22219.
  • A. Riaz, A. U. Awan, S. Hussain, S. Ullah and K. Ali, “Effects of solid particles on fluid-particulate phase flow of non-Newtonian fluid through eccentric annuli having thin peristaltic walls,” J. Therm. Anal. Calorim., vol. 147, no. 2, pp. 1645–1656, 2022. DOI: 10.1007/s10973-020-10447-x.
  • R. K. Chandrawat, V. Joshi and O. A. Beg, “Numerical study of time dependent flow of immiscible Saffman dusty (fluid-particle suspension) and Eringen micro polar fluids in a duct with a modified cubic B-spline Differential Quadrature method,” Int. Commun. Heat Mass Transfer, vol. 130, pp. 105758, 2022. DOI: 10.1016/j.icheatmasstransfer.2021.105758.
  • Y. Dharmendar Reddy, V. Shankar Goud and M. Anil Kumar, “Radiation and heat absorption effects on an unsteady MHD boundary layer flow along an accelerated infinite vertical plate with ramped plate temperature in the existence of slip condition,” Part Diff. Equs. Appl. Math., vol. 4, pp. 100166, 2021. DOI: 10.1016/j.padiff.2021.100166.
  • Y. Dharmendar Reddy, F. M. Oudina, B. S. Goud and A. I. Ismail, “Radiation, velocity and thermal slips effect toward MHD boundary layer flow through Heat and Mass transport of Williamson nanofluid with porous medium,” Arab. J. Sci. Eng., vol. 47, no. 12, pp. 16355–16369, 2022. DOI: 10.1007/s13369-022-06825-2.
  • B. S. Goud and Y. Dharmender Reddy, “Chemical reaction and Soret effect on an unsteady MHD heat and mass transfer fluid flow along an infinite vertical plate with radiation and heat absorption,” J. Ind. Chem. Soc., vol. 99, no. 11, pp. 100762, 2022. DOI: 10.1016/j.jics.2022.100762.
  • Y. Dharmendar Reddy, B. S. Goud, K. S. Nisar, B. Alshahrani, M. Mahmoud and C. Park, “Heat absorption/generation effect on MHD heat transfer fluid flow along a stretching cylinder with a porous medium,” Alex. Eng. J., vol. 64, no. 1, pp. 659–666, 2023. DOI: 10.1016/j.aej.2022.08.049.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.