Publication Cover
Numerical Heat Transfer, Part B: Fundamentals
An International Journal of Computation and Methodology
Volume 85, 2024 - Issue 5
42
Views
0
CrossRef citations to date
0
Altmetric
Articles

Thermal activity of hot bodies trapped inside a moving chamber with a complex fluid under the influence of MHD and buoyancy forces

ORCID Icon & ORCID Icon
Pages 569-586 | Received 02 Mar 2023, Accepted 13 Aug 2023, Published online: 30 Aug 2023

References

  • F. Selimefendigil, “Mixed convection in a lid-driven cavity filled with single and multiple-walled carbon nanotubes nanofluid having an inner elliptic obstacle,” Propuls. Power Res., vol. 8, no. 2, pp. 128–137, 2019. DOI: 10.1016/j.jppr.2019.01.007.
  • K. Ghasemi and M. Siavashi, “Three-dimensional analysis of magnetohydrodynamic transverse mixed convection of nanofluid inside a lid-driven enclosure using MRT-LBM,” Int. J. Mech., vol. 165, pp. 105199, 2020. DOI: 10.1016/j.ijmecsci.2019.105199.
  • A. I. Alsabery, M. A. Sheremet, M. Sheikholeslami, A. J. Chamkha and I. Hashim, “Magnetohydrodynamics energy transport inside a double lid-driven wavy-walled chamber: impacts of inner solid cylinder and two-phase nanoliquid approach,” Int. J. Mech. Sci., vol. 184, pp. 105846, 2020. DOI: 10.1016/j.ijmecsci.2020.105846.
  • N. S. Gibanov, M. A. Sheremet, H. F. Oztop and N. Abu-Hamdeh, “Effect of uniform inclined magnetic field on mixed convection in a liddriven cavity having a horizontal porous layer saturated with a ferrofluid,” Int. . Heat Mass Transfer., vol. 114, pp. 1086–1097, 2017. DOI: 10.1016/j.ijheatmasstransfer.2017.07.001.
  • K. M. Gangawane, H. F. Oztop and N. Abu-Hamdeh, “Mixed convection characteristic in a lid-driven cavity containing heated triangular block: effect of location and size of block,” Int. J. Heat Mass Transfer., vol. 124, pp. 860–875, 2018. DOI: 10.1016/j.ijheatmasstransfer.2018.03.079.
  • K. M. Gangawane and B. Manikandan, “Mixed convection characteristics in lid-driven cavity containing heated triangular block,” Chin. J. Chem. Eng., vol. 25, no. 10, pp. 1381–1394, 2017. DOI: 10.1016/j.cjche.2017.03.009.
  • A. I. Alsabery, M. A. Sheremet, A. J. Chamkha and I. Hashim, “Energy transport of two-phase nanofluid approach inside a threedimensional lid-driven cubic cavity containing solid cylinder and heat source,” Chem. Eng. Proces., vol. 154, pp. 108010, 2020. DOI: 10.1016/j.cep.2020.108010.
  • H. Laidoudi and M. Bouzit, “Mixed convection heat transfer from confined tandem circular cylinders in cross-flow at low Reynolds number,” MECHANIKA, vol. 23, no. 4pp, pp. 522–527, 2017. DOI: 10.5755/j01.mech.23.4.15258.
  • T. Javed and M. A. Siddiqui, “Effect of MHD on heat transfer through ferrofluid inside a square cavity containing obstacle/heat source,” Int. J. Thermal Sci., vol. 125, pp. 419–427, 2018. DOI: 10.1016/j.ijthermalsci.2017.12.009.
  • A. Raji, M. Hasnaoui, M. Naïmi, K. Slimani and M. T. Ouazzani, “Effect of the subdivision of an obstacle on the natural convection heat transfer in a square cavity,” Comput. Fluids., vol. 68, pp. 1–15, 2012. DOI: 10.1016/j.compfluid.2012.07.014.
  • P. Y. Xiong, A. Hamid, K. Iqbal, M. Irfan and M. Khan, “Numerical simulation of mixed convection flow and heat transfer in the lid-driven triangular cavity with different obstacle configurations,” Int. Commun. Heat Mass. Transfer., vol. 123, pp. 105202, 2021. DOI: 10.1016/j.icheatmasstransfer.2021.105202.
  • P. Chorin, F. Moreau and D. Saury, “Heat transfer modification of a natural convection flow in a differentially heated cavity by means of a localized obstacle,” Int. J. Thermal Sci., vol. 151, pp. 106279, 2020. DOI: 10.1016/j.ijthermalsci.2020.106279.
  • A. A. Mehrizi, M. Farhadi, H. H. Afroozi, K. Sedighi and A. R. Darz, “Mixed convection heat transfer in a ventilated cavity with hot obstacle: effect of nanofluid and outlet port location,” Int. Commun. Heat Mass Transfer., vol. 39Issue, no. 7, pp. 1000–1008, 2012. DOI: 10.1016/j.icheatmasstransfer.2012.04.002.
  • I. Aliouane, N. Kaid, H. Ameur and H. Laidoudi, “Investigation of the flow and thermal fields in square enclosures: Rayleigh-Bénard’s instabilities of nanofluids,” Thermal Sci. Eng. Prog., vol. 25, pp. 100959, 2021. DOI: 10.1016/j.tsep.2021.100959.
  • H. Laidoudi, “Natural convection from four circular cylinders in across arrangement within horizontal annular space,” Acta Mechanica et Automatica, vol. 14, no. 2, pp. 98–102, 2020. DOI: 10.2478/ama-2020-0014.
  • M. Sheikholeslami, S. A. Shehzad and Z. Li, “Water based nanofluid free convection heat transfer in a three dimensional porous cavity with hot sphere obstacle in existence of Lorenz forces,” Int. J. Heat Mass. Transfer., vol. 125pp, pp. 375–386, 2018. DOI: 10.1016/j.ijheatmasstransfer.2018.04.076.
  • M. Sheikholeslami, “Influence of magnetic field on Al2O3-H2O nanofluid forced convection heat transfer in a porous lid driven cavity with hot sphere obstacle by means of LBM,” J. Molecular Liquids., vol. 263, pp. 472–488, 2018. DOI: 10.1016/j.molliq.2018.04.111.
  • H. Laidoudi and M. Helmaoui, “Enhancement of natural convection heat transfer in concentric annular space using inclined elliptical cylinder,” J. Nav. Arch. Mar. Engg., vol. 17, no. 2, pp. 89–99, 2020. DOI: 10.3329/jname.v17i2.44991.
  • A. Abderrahmane, et al., “Natural convection within inversed T-shaped enclosure filled by nano-enhanced phase change material: numerical investigation,” Nanomaterials, vol. 12, no. 17, pp. 2917, 2022. DOI: 10.3390/nano12172917.
  • A. Abderrahmane, et al., “2D MHD mixed convection in a Zigzag trapezoidal thermal energy storage system using NEPCM,” " Nanomaterials, vol. 12, no. 19, pp. 3270, 2022. DOI: 10.3390/nano12193270.
  • H. Laidoudi, et al., “Irreversibility interpretation and MHD mixed convection of hybrid nanofluids in a 3D heated lid-driven chamber,” " Nanomaterials, vol. 12, no. 10, pp. 1747, 2022. DOI: 10.3390/nano12101747.
  • V. I. Terekhov, S. V. Kalinina, Y. M. Mshvidobadze and K. A. Sharov, “Impingement of an impact jet onto a spherical cavity. Flow structure and heat transfer,” Int. J. Heat Mass Transfer., vol. 52, no. 11-12, pp. 2498–2506, 2009. DOI: 10.1016/j.ijheatmasstransfer.2009.01.018.
  • R. Mohebbi, M. Izadi, H. Sajjadi, A. A. Delouei and M. A. Sheremet, “Examining of nanofluid natural convection heat transfer in a Γ-shaped enclosure including a rectangular hot obstacle using the lattice Boltzmann method,” Physica A: Statist. Mech. Applicat., vol. 526, pp. 120831, DOI: 10.1016/j.physa.2019.04.067.
  • S. Z. Abbas, X. Wang, W. A. Khan, A. Hobiny and K. Iqbal, “Finite element analysis of nanofluid flow and heat transfer in a square cavity with two circular obstacles at different positions in the presence of magnetic field,” J. Energy. Storage., vol. 51, pp. 104462, July. 2022. DOI: 10.1016/j.est.2022.104462.
  • F. Selimefendigil and H. F. Öztop, “Natural convection and entropy generation of nanofluid filled cavity having different shaped obstacles under the influence of magnetic field and internal heat generation,” J. Taiwan Inst. Chem. Eng., vol. 56, pp. 42–56, 2015. DOI: 10.1016/j.jtice.2015.04.018.
  • F. A. Soomro, R. U. Haq, E. A. Algehyne and I. Tlili, “Thermal performance due to magnetohydrodynamics mixed convection flow in a triangular cavity with circular obstacle,” J. Energy Storage, vol. 31, pp. 101702, October 2020. DOI: 10.1016/j.est.2020.101702.
  • S. Jakeer, P. A. Reddy, A. M. Rashad and H. A. Nabwey, “Impact of heated obstacle position on magneto-hybrid nanofluid flow in a lid-driven porous cavity with Cattaneo-Christov heat flux pattern,” Alexandria Engineering J., vol. 60, no. 1, pp. 821–835, 2021. DOI: 10.1016/j.aej.2020.10.011.
  • N. Acharya, “Impacts of different thermal modes of multiple obstacles on the hydrothermal analysis of Fe3O4–water nanofluid enclosed inside a nonuniformly heated cavity,” Heat Trans, vol. 51, no. 2, pp. 1376–1405, 2022. DOI: 10.1002/htj.22356.
  • N. F. M. Noor, R. U. Haq, H. F. Wong, A. K. Alzahrani and M. Z. Ullah, “Flow and heat transfer due to partially heated moving lid in a trapezoidal cavity with different constraints at inner circular obstacle,” Int. Commun. Heat Mass Transfer, vol. 135, pp. 106111, 2022. DOI: 10.1016/j.icheatmasstransfer.2022.106111.
  • M. Yuan, R. Mohebbi, M. M. Rashidi and Y. Zhigang, “Simulation of nanofluid natural convection in a U-shaped cavity equipped by a heating obstacle: effect of cavity’s aspect ratio,” J. Taiwan Inst. Chemical Engineers, vol. 93, pp. 263–276, 2018. DOI: 10.1016/j.jtice.2018.07.026.
  • A. A. Yousif, O. R. Alomar and A. T. Hussein, “Impact of using triple adiabatic obstacles on natural convection inside porous cavity under non-darcy flow and local thermal non-equilibrium model,” Int. Commun. Heat Mass Transfer, vol. 130, pp. 105760, January 2022. DOI: 10.1016/j.icheatmasstransfer.2021.105760.
  • Z. H. Khan, M. Hamid, W. A. Khan, L. Sun and H. Liu, “Thermal non-equilibrium natural convection in a trapezoidal porous cavity with heated cylindrical obstacles,” Int. Commun. Heat Mass Transfer, vol. 126, pp. 105460, 2021. DOI: 10.1016/j.icheatmasstransfer.2021.105460.
  • N. M. Basher, O. R. Alomar and I. A. Mohamed, “Impact of using single heated obstacle on natural convection inside porous cavity under non-Darcy flow and thermal non-equilibrium model: a comparison between horizontal and vertical heated obstacle arrangements,” Int. Commun. Heat Mass Transfer, vol. 133, pp. 105925, 2022. DOI: 10.1016/j.icheatmasstransfer.2022.105925.
  • M. Miansari, M. Gorji, D. D. Ganji and K. Hooman, “Comparison between continuum and porous continuum models in studying natural convection in porous cavity with random distribution of solid obstacles,” Int. J. Numer. Methods Heat Fluid Flow., vol. 25, no. 3, pp. 484–503, 2015. DOI: 10.1108/HFF-04-2014-0100.
  • P. Barnoon, D. Toghraie and A. Karimipour, “Application of rotating circular obstacles in improving ferrofluid heat transfer in an enclosure saturated with porous medium subjected to a magnetic field,” J. Therm. Anal. Calorim., vol. 145, no. 6, pp. 3301–3323, 2021. DOI: 10.1007/s10973-020-09896-1.
  • H. Laidoudi, et al., “Lid-driven chamber with 3D elliptical obstacle under the impacts of the nano-properties of the fluid, Lorentz Force, thermal buoyancy, and space porosity,” Nanomaterials, vol. 12, no. 14, pp. 2373, 2022. DOI: 10.3390/nano12142373.
  • H. Laidoudi and H. Ameur, “Investigation of the mixed convection of power-law fluids between two horizontal concentric cylinders: effect of various operating conditions,” Thermal Sci. Eng. Prog., vol. 20, pp. 100731, 2020. DOI: 10.1016/j.tsep.2020.100731.
  • H. Laidoudi and H. Ameur, “Complex fluid flow in annular space under the effects of mixed convection and rotating wall of the outer enclosure,” Heat Trans, vol. 51, no. 5, pp. 3741–3767, July 2022. DOI: 10.1002/htj.22472.
  • R. Mohebbi and M. M. Rashidi, “Numerical simulation of natural convection heat transfer of a nanofluid in an L-shaped enclosure with a heating obstacle,” J. Taiwan Inst. Chemical Engineers, vol. 72, pp. 70–84, 2017. DOI: 10.1016/j.jtice.2017.01.006.
  • M. Usman, Z. H. Khand and M. B. Liu, “MHD natural convection and thermal control inside a cavity with obstacles under the radiation effects,” Physica A: Statist. Mech. Appl., vol. 535, pp. 122443, 2019. DOI: 10.1016/j.physa.2019.122443.
  • M. Sheikholeslami, “Efficacy of porous foam on discharging of phase change material with inclusion of hybrid nanomaterial,” J. Energy Storage, vol. 62, pp. 106925, 2023. DOI: 10.1016/j.est.2023.106925.
  • M. Sheikholeslami, “Numerical investigation of solar system equipped with innovative turbulator and hybrid nanofluid,” Solar Energy Materials Solar Cells, vol. 243, pp. 111786, 2022. DOI: 10.1016/j.solmat.2022.111786.
  • M. Sheikholeslami, “Numerical analysis of solar energy storage within a double pipe utilizing nanoparticles for expedition of melting,” Solar Energy Materials Solar Cells, vol. 245, pp. 111856, 2022. DOI: 10.1016/j.solmat.2022.111856.
  • M. Sheikholeslami, “New computational approach for exergy and entropy analysis of nanofluid under the impact of Lorentz force through a porous media,” Computer Methods APPl. Mech. Eng., vol. 344, pp. 319–333, 2019. DOI: 10.1016/j.cma.2018.09.044.
  • M. Sheikholeslami, “Numerical approach for MHD Al2O3-water nanofluid transportation inside a permeable medium using innovative computer method,” Computer Methods APPl. Mechanics Engineering, vol. 344, pp. 306–318, 2019. DOI: 10.1016/j.cma.2018.09.042.
  • T. Javed, B. Iftikhar and M. A. Siddiqui, “MHD mixed convection non-isothermal flow and heat transfer analysis of non-Newtonian fluid saturated in I-shaped cavity,” Numerical Heat Transfer, Part B., vol. 83, no. 6, pp. 395–409, 2023. DOI: 10.1080/10407790.2022.2164531.
  • B. K. Jha and G. Samaila, “Nonlinear approximation for buoyancy-driven mixed convection heat and mass transfer flow over an inclined porous plate with Joule heating, nonlinear thermal radiation, viscous dissipation, and thermophoresis effects,” Numerical Heat Transfer, Part B., vol. 83, no. 4, pp. 139–161, 2023. DOI: 10.1080/10407790.2022.2150341.
  • S. Padhi and I. Nayak, “Unsteady EMHD free convective second grade fluid flow past an exponentially accelerated vertical porous plate,” Numerical Heat Transfer, Part B., vol. 83, no. 3, pp. 102–119, 2023. DOI: 10.1080/10407790.2022.2147885.
  • N. Vijay and K. Sharma, “Entropy generation analysis in MHD hybrid nanofluid flow: effect of thermal radiation and chemical reaction,” Num. Heat Transfer, Part B, vol. 84, no. 1, pp. 66–82, 2023. DOI: 10.1080/10407790.2023.2186989.
  • H. Laidoudi and O. D. Makinde, “Study on the effect of flow velocity and thermal buoyancy on the dynamic behaviour of flow inside a two-hole chamber,” Int. J. Ambient Energy, vol. 43, no. 1, pp. 5393–5404, 2022. DOI: 10.1080/01430750.2021.1953586.
  • L. Panigrahi, J. P. Panda and G. C. Dash, “MHD natural convective flow of a polar fluid with Newtonian heat transfer in vertical concentric annuli,” Int. J. Ambient Energy., vol. 43, no. 1, pp. 3410–3417, 2022. DOI: 10.1080/01430750.2020.1831953.
  • G. Kefayati, “FDLBM simulation of magnetic field effect on non-newtonian blood flow in a cavity driven by the motion of two facing lids,” Powder Techno.l, vol. 253, pp. 325–337, 2014. DOI: 10.1016/j.powtec.2013.11.047.
  • I. Sarris, G. Zikos, A. Grecos and N. Vlachos, “On the limits of validity of the low magnetic reynolds number approximation in MHD natural-convection heat transfer,” Numer. Heat Transfer Part B, vol. 50, pp. 158–180, 2006.
  • G.H.R. Kefayati, “Simulation of double diffusive MHD (magnetohydrodynamic) natural convection and entropy generation in an open cavity filled with power-law fluids in the presence of Soret and Dufour effects (Part I: Study of fluid flow, heat and mass transfer),” Energy, vol. 107, pp. 889–916, 2016. DOI: 10.1016/j.energy.2016.05.049.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.