Publication Cover
Numerical Heat Transfer, Part B: Fundamentals
An International Journal of Computation and Methodology
Volume 85, 2024 - Issue 5
76
Views
2
CrossRef citations to date
0
Altmetric
Articles

Significance of Hall current and Ion slip in a three-dimensional Maxwell nanofluid flow over rotating disk with variable characteristics and gyrotactic microorganisms

, ORCID Icon, , &
Pages 587-603 | Received 12 May 2023, Accepted 17 Aug 2023, Published online: 04 Sep 2023

References

  • S. U. Choi and J. A. Eastman, Enhancing thermal conductivity of fluids with nanoparticles (No. ANL/MSD/CP-84938; CONF-951135-29). Argonne National Lab. (ANL), Argonne, IL (U S), 1995.
  • J. Buongiorno, “Convective transport in nanofluids,” Transactions of the ASME, vol. 128, pp. 240–250, 2006. DOI: 10.1115/1.2150834.
  • P. S.o, M. Gali, R. Kumar and G. D. Prasanna, “A comparative analysis on magnetically triggered non-Newtonian nanofluid flow over a melting disk,” Int. J. Mod. Simulat., pp. 1–10, 2023. DOI: 10.1080/02286203.2023.2168476.
  • V. Puneeth, S. Manjunatha, S. A. Shehzad and M. Arshad, “Marangoni bioconvection and cross diffusion in the Casson nanofluid flow over a magnetized disk: DTM-Pade solutions,” Wave Random Complex., pp. 1–18, 2023. 2149889. DOI: 10.1080/17455030.2022.
  • Mattipelli, R., Reddy, M. C. K., Kumar, C. K. and Ch P., Darcy-Forchheimer radiation effect on a Williamson nanofluid flowing with gyrotactic microorganisms over a spinning disk. 2023. DOI: 10.22541/au.167872035.51232021/v1.
  • K. Manimekalai, P. Umadevi, K. Loganathan and C. Selvamani, “Bioconvective flow of Maxwell nanofluid with swimming of gyrotactic microorganisms with triple stratification,” Mater. Today: Proc., 2023. DOI: 10.1016/j.matpr.2023.03.737.
  • S. A. Lone, S. Anwar, Z. Raizah, M. Y. Almusawa and A. Saeed, “A magnetized Maxwell nanofluid flow over a stratified stretching surface with Cattaneo-Christov double diffusion theory,” J Magn Magnetic Mater, vol. 575, pp. 170722, 2023. DOI: 10.1016/j.jmmm.2023.170722.
  • A. Wakif, “Numerical inspection of two-dimensional MHD mixed bioconvective flows of radiating Maxwell nanofluids nearby a convectively heated vertical surface,” Wave Random Complex, pp. 1–22, 2023. DOI: 10.1080/17455030.2023.2179853.
  • M. Jawad, M. K. Hameed, A. Majeed and K. S. Nisar, “Arrhenius energy and heat transport activates effect on gyrotactic microorganism flowing in Maxwell bio-nanofluid with nield boundary conditions,” Case Stud. Therm. Eng., vol. 41, pp. 102574, 2023. DOI: 10.1016/j.csite.2022.102574.
  • A. Khan, et al., “Bioconvection Maxwell nanofluid flow over a stretching cylinder influenced by chemically reactive activation energy surrounded by a permeable medium,” Aip Conp Proc., vol. 10, pp. 1348, 2023. DOI: 10.3389/fphy.2022.1065264.
  • J. Ahmed, M. Khan and L. Ahmad, “Transient thin film flow of nonlinear radiative Maxwell nanofluid over a rotating disk,” Phy. Lett A., vol. 383, no. 12, pp. 1300–1305, 2019. DOI: 10.1016/j.physleta.2019.01.024.
  • M. Ijaz and M. Ayub, “Nonlinear convective stratified flow of Maxwell nanofluid with activation energy,” Heliyon., vol. 5, no. 1, pp. e01121, 2019. 2019. DOI: 10.1016/j.heliyon.2019.e01121.
  • M. Mustafa and J. A. Khan, “Numerical study of partial slip effects on MHD flow of nanofluids near a convectively heated stretchable rotating disk,” J. Mol. Liq., vol. 234, pp. 287–295, 2017. DOI: 10.1016/j.molliq.2017.03.087.
  • S. A. Alsallami, H. Zahir, T. Muhammad, A. U. Hayat, M. R. Khan and A. Ali, “Numerical simulation of Marangoni Maxwell nanofluid flow with Arrhenius activation energy and entropy anatomization over a rotating disk,” Wave Random Complex, pp. 1–19, 2022. DOI: 10.1080/17455030.2022.2045385.
  • R. P. Gowda, A. Rauf, R. Naveen Kumar, B. C. Prasannakumara and S. A. Shehzad, “Slip flow of Casson–Maxwell nanofluid confined through stretchable disks,” Indian J. Phys., vol. 96, no. 7, pp. 2041–2049, 2022. DOI: 10.1007/s12648-021-02153-7.
  • Ramzan, M., Shaheen, N., Ghazwani, H. A. S and Kadry, S., “Nonlinear convective nanofluid flow in an annular region of two concentric cylinders with generalized Fourier law: an application of Hamilton-Crosser nanofluid model,” Numer. Heat Transf. Part A: Appl., pp. 1–18, 2023. DOI: 10.1080/10407782.2023.2175749.
  • R. Kodi, C. Ganteda, A. Dasore, M. L. Kumar, G. Laxmaiah, M. A. Hasan, S. Islam, Influence of MHD mixed convection flow for Maxwell nanofluid through a vertical cone with porous material in the existence of variable heat conductivity and diffusion. Case Stud. Therm. Eng., vol. 44, pp. 875, 2023 DOI: 10.1016/j.csite.2023.102875.
  • Ramzan, M., Shahmir, N., Aljurbua, S. F., and Ghazwani H. A. S., “Numerical study of nanofluid flow over an exponentially stretching sheet with Hall current considering PEST and PEHF temperatures,” Waves Random Complex Media, pp. 1–19, 2022. DOI: 10.1080/17455030.2022.2136779.
  • E. Osalusi, J. Side, R. Harris and B. Johnston, “On the effectiveness of viscous dissipation and joule heating on steady MHD and slip flow of a Bingham fluid over a porous rotating disk in the presence of Hall and ion-slip currents,” Rom Rep Phy, vol. 61, no. 1, pp. 71–93, 2009.
  • K. Raghunath, et al., “Processing to pass unsteady MHD flow of a second-grade fluid through a porous medium in the presence of radiation absorption exhibits Diffusion thermo, hall and ion slip effects,” Adv Mater Pes-SWITZ, pp. 1–18, 2023. DOI: 10.1080/2374068X.2023.2191450.
  • M. Bilal, S. Hussain and M. Sagheer, “Boundary layer flow of magneto-micropolar nanofluid flow with Hall and ion-slip effects using variable thermal diffusivity,” Bullet Polish Acad Sci. Techn Sci, vol. 65, no. 3, pp. 383–390, 2017. DOI: 10.1515/bpasts-2017-0043.
  • S. D and K. K, “Analytical solution for Hall and Ion-slip effects on mixed convection flow of couple stress fluid between parallel disks,” Math Comp Mod, vol. 57, no. 9-10, pp. 2494–2509, 2013. DOI: 10.1016/j.mcm.2012.12.036.
  • H. A. Attia, “Transient Hartmann flow with heat transfer considering the ion slip,” Phys. Scr, vol. 66, no. 6, pp. 470–475, 2002. DOI: 10.1238/Physica.Regular.066a00470.
  • H. A. Attia, “Unsteady Von-Karman magnetic flow and heat transfer considering the ion slip,” Int Com Heat Mass Transf., vol. 30, no. 4, pp. 535–543, 2003. DOI: 10.1016/S0735-1933(03)00082-4.
  • H. A. Attia, “Ion slip effect on the flow due to a rotating disk,” Arabian J. Sci. Eng., vol. 29, pp. 165–172, 2004.
  • Z. Abdelmalek, S. U. Khan, H. Waqas, K. Al-Khaled and I. Tlili, “A proposed unsteady bioconvection model for transient thin film flow of rate-type nanoparticles configured by rotating disk,” J Therm Anal Calorim, vol. 144, no. 5, pp. 1639–1654, 2021. DOI: 10.1007/s10973-020-09698-5.
  • Umavathi, J. C., Bég, O. A., Khan, U. F., Bég, T. A., & Kadir, A. Computation of swirling hydromagnetic nanofluid flow containing gyrotactic microorganisms from a spinning disk to a porous medium with hall current and anisotropic slip effects. ZAMM‐J Appl Math Mech/Zeitschrift für Angewandte Mathematik und Mechanik, pp. e202100575, 2023. DOI: 10.1002/zamm.202100575.
  • S. Maatoug, et al., “Bioconvective Homann flow of tangent hyperbolic nanofluid due to spiraling disk with convective and zero mas flux constraints,” J Indian Chem Soc., vol. 100, no. 1, pp. 100819, 2023. DOI: 10.1016/j.jics.2022.100819.
  • A. V. Kuznetsov, “Nanofluid bioconvection in water-based suspensions containing nanoparticles and oxytactic microorganisms: oscillatory instability,” Nanoscale Res Lett, vol. 6, no. 1, pp. 100, 2011. http://www.nanoscalereslett.com/content/6/1/100.
  • C. S. K. Raju, M. M. Hoque and T. Sivasankar, “Radiative flow of Casson fluid over a moving wedge filled with gyrotactic microorganisms,” Adv Powder Technol, vol. 28, no. 2, pp. 575–583, 2017. DOI: 10.1016/j.apt.2016.10.026.
  • A. Alsaedi, M. I. Khan, M. Farooq, N. Gull and T. Hayat, “Magnetohydrodynamic (MHD) stratified bioconvective flow of nanofluid due to gyrotactic microorganisms,” Adv Powder Technol., vol. 28, no. 1, pp. 288–298, 2017. DOI: 10.1016/j.apt.2016.10.002.
  • W. A. Khan, A. M. Rashad, M. M. M. Abdou and I. Tlili, “Natural bioconvection flow of a nanofluid containing gyrotactic microorganisms about a truncated cone,” Eur. J. Mech.-B/Fluids, vol. 75, pp. 133–142, 2019. DOI: 10.1016/j.euromechflu.2019.01.002.
  • H. Waqas, S. U. Khan, M. Hassan, M. M. Bhatti and M. Imran, “Analysis on the bioconvection flow of modified second-grade nanofluid containing gyrotactic microorganisms and nanoparticles,” J. Mol. Liq., vol. 291, pp. 111231, 2019. DOI: 10.1016/j.molliq.2019.111231.
  • T. Rafiq, M. Mustafa and M. A. Farooq, “Modeling heat transfer in fluid flow near a decelerating rotating disk with variable fluid properties,” Int. Commun. Heat Mass Transf., vol. 116, pp. 104673, 2020. DOI: 10.1016/jcheatmasstransfer.2020.104673.
  • J. Ahmed, M. Khan, L. Ahmad, A. K. Alzahrani and M. Alghamdi, “Thermally radiative flow of Maxwell nanofluid over a permeable rotating disk,” Phys. Scr., vol. 94, no. 12, pp. 125016, 2019. DOI: 10.1088/1402-4896/ab3b9a.
  • M. Qasim, M. I. Afridi, A. Wakif and S. Saleem, “Influence of variable transport properties on nonlinear radioactive Jeffrey fluid flow over a disk: utilization of generalized differential quadrature method,” Arab. J. Sci. Eng., vol. 44, no. 6, pp. 5987–5996, 2019. DOI: 10.1007/s13369-019-03804-y.
  • K. Naganthran, M. Mustafa, A. Mushtaq and R. Nazar, “Dual solutions for fluid flow over a stretching/shrinking rotating disk subject to variable fluid properties,” Phys. A: Statis. Mech. Appl., vol. 556, pp. 124773, 2020. DOI: 10.1016/j.physa.2020.124773.
  • M. Khan, T. Salahuddin and S. O. Stephen, “Variable thermal conductivity and diffusivity of liquids and gases near a rotating disk with temperature dependent viscosity,” J. Mol. Liq., vol. 333, pp. 115749, 2021. 2021.115749. DOI: 10.1016/j.molliq.
  • M. Ramzan, H. Gul, M. Mursaleen, K. S. Nisar, W. Jamshed and T. Muhammad, “Von Karman rotating nanofluid flow with modified Fourier law and variable characteristics in liquid and gas scenarios,” Sci Rep., vol. 11, no. 1, pp. 16442, 2021. DOI: 10.1038/s41598-021-95644-w.
  • Ahmed, S. E., Arafa, A. A and Hussein, S. A., “Bioconvective flow of a variable properties hybrid nanofluid over a spinning disk with Arrhenius activation energy, Soret and Dufour impacts,” Numer. Heat Transf. Part A: Appl., pp. 1–23, 2023. DOI: 10.1080/10407782.2023.2193709.
  • M. Ramzan, et al., “Influence of variable thermal conductivity and diffusion coefficients in the flow of Jeffrey fluid past a lubricated surface with homogeneous-heterogeneous reactions: a finite-difference approximations,” Numer. Heat Transf. Part A: Appl., pp. 1–17, 2023. DOI: 10.1080/10407782.2023.2171927.
  • T. Salahuddin, N. Siddique, M. Khan and M. Altanji, “A significant study on flow analysis of viscoelastic fluid with variable thermo-physical properties,” Math Comput. Simulat., vol. 194, pp. 416–429, 2022. DOI: 10.1016/j.matcom.2021.11.024.
  • S. Riasat, M. Ramzan, Y. L. Sun, M. Y. Malik and R. Chinram, “Comparative analysis of Yamada-Ota and Xue models for hybrid nanofluid flow amid two concentric spinning disks with variable thermophysical characteristics,” Case Stud. Therm. Eng., vol. 26, pp. 101039, 2021. DOI: 10.1016/j.csite.2021.101039.
  • J. Iqbal, F. M. Abbasi, M. Alkinidri and H. Alahmadi, “Heat and mass transfer analysis for MHD bioconvection peristaltic motion of Powell-Eyring nanofluid with variable thermal characteristics,” Case Stud. Therm. Eng., vol. 43, pp. 102692, 2023. DOI: 10.1016/j.csite.2022.102692.
  • N. Shaheen, M. Ramzan and M. K. Alaoui, “Impact of Hall current on a 3D Casson nanofluid flow past a rotating deformable disk with variable characteristics,” Arab J. Sci. Eng., vol. 46, no. 12, pp. 12653–12666, 2021. DOI: 10.1007/s13369-021-06060-1.
  • M. Khan, T. Salahuddin and S. O. Stephen, “Thermo-physical characteristics of liquids and gases near a rotating disk,” Chaos Soliton Fractal., vol. 141, pp. 110304, 2020. DOI: 10.1016/j.chaos.2020.110304.
  • Saeed, A., & Gul, T. Bioconvection Casson nanofluid flow together with Darcy-Forchheimer due to a rotating disk with thermal radiation and Arrhenius activation energy. SN App Sci., vol. 3, no. 1, pp. 1–19, 2021. DOI: 10.1007/s42452-020-04007-z.
  • A. Hafeez, M. Khan and J. Ahmed, “Flow of Oldroyd-B fluid over a rotating disk with Cattaneo–Christov theory for heat and mass fluxes,” Comput Methods Programs Biomed, vol. 191, pp. 105374, 2020. DOI: 10.1016/j.cmpb.2020.105374.
  • M. Turkyilmazoglu, “Nanofluid flow and heat transfer due to a rotating disk,” Comput. Fluid., vol. 94, pp. 139–146, 2014. DOI: 10.1016/j.compfluid.2014.02.009.
  • A. Ali, S. Sarkar and S. Das, “Bioconvective chemically reactive entropy optimized Cross-nanomaterial conveying oxytactic microorganisms over a flexible cylinder with Lorentz force and Arrhenius kinetics,” Math. Comput. Simul., vol. 205, pp. 1029–1051, 2023. DOI: 10.1016/j.matcom.2022.11.002.
  • S. Sarkar and S. Das, “Gyrotactic microbes’ movement in a magneto-nano-polymer induced by a stretchable cylindrical surface set in a DF porous medium subject to non-linear radiation and Arrhenius kinetics,” Int. J. Modell. Simul., pp. 1–18, 2023. DOI: 10.1080/02286203.2023.2205987.
  • A. Ali, S. Sarkar and S. Das, “Physical insight into magneto-thermo-migration of motile gyrotactic microorganisms over a flexible cylinder with wall slip, and Arrhenius kinetics,” Waves Random Complex Media, pp. 1–24, 2023. DOI: 10.1080/17455030.2023.2178059.
  • S. Sarkar and S. Das, “Magneto-thermo-bioconvection of a chemically sensitive Cross nanofluid with an infusion of gyrotactic microorganisms over a lubricious cylindrical surface: statistical analysis,” Int. J. Model. Simul., pp. 1–22, 2022. DOI: 10.1080/02286203.2022.2141221.
  • S. Sarkar, T. Kumar Pal, A. Ali and S. Das, “Themo-bioconvection of gyrotactic microorganisms in a polymer solution near a perforated Riga plate immersed in a DF medium involving heat radiation, and Arrhenius kinetics,” Chem. Phys. Lett., vol. 797, pp. 139557, 2022. DOI: 10.1016/j.cplett.2022.139557.
  • C. Yin, L. Zheng, C. Zhang and X. Zhang, “Flow and heat transfer of nanofluids over a rotating disk with uniform stretching rate in the radial direction,” Propul. Power Res., vol. 6, no. 1, pp. 25–30, 2017. DOI: 10.1016/j.jppr.2017.01.004.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.