Publication Cover
Numerical Heat Transfer, Part B: Fundamentals
An International Journal of Computation and Methodology
Volume 85, 2024 - Issue 5
57
Views
8
CrossRef citations to date
0
Altmetric
Articles

Significance of nanoparticle radius on EMHD Casson nanomaterial flow with non-uniform heat source and second-order velocity slip

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 604-621 | Received 03 Mar 2023, Accepted 17 Aug 2023, Published online: 06 Sep 2023

References

  • S. U. S. Choi and J. A. Eastman, “Enhancing thermal conductivity of fluids with nanoparticles,” in Proceedings of the 1995 International Mechanical Engineering Congress & Exposition, vol. 66. San Francisco, CA: ASME, 1995, pp. 99–105.
  • K. Khanafer, K. Vafai and M. Lightstone, “Buoyancy-driven heat transfer enhancement in a two-dimensional enclosure utilizing nanofluids,” Int. J. Heat Mass Transfer, vol. 46, no. 19, pp. 3639–3653, 2003. DOI: 10.1016/S0017-9310(03)00156-X.
  • N. Casson, “A flow equation for pigment-oil suspensions of the printing ink type,” in Rheology of Disperse Systems, C. C. Mill, Ed. Oxford: Pergamon Press, 1959, pp. 84–104.
  • S. Mukhopadhyay, “Casson fluid flow and heat transfer over a nonlinearly stretching surface,” Chin. Phys. B, vol. 22, no. 7, pp. 074701, 2013. DOI: 10.1088/1674-1056/22/7/074701.
  • A. Hussanan, M. Z. Salleh, H. T. Alkasasbeh and I. Khan, “MHD flow and heat transfer in a casson fluid over a nonlinearly stretching sheet with Newtonian heating,” Heat Transfer Res., vol. 49, no. 12, pp. 1185–1198, 2018. DOI: 10.1615/HeatTransRes.2018014771.
  • U. Khan, A. Shafiq, A. Zaib, E.-S. M. Sherif and D. Baleanu, “MHD radiative blood flow embracing gold particles via a slippery sheet through an erratic heat sink/source,” Mathematics, vol. 8, no. 9, p. 1597, 2020. DOI: 10.3390/math8091597.
  • U. Khan, S. Bilal, A. Zaib, O. D. Makinde and A. Wakif, “Numerical simulation of a nonlinear coupled differential system describing a convective flow of Casson gold–blood nanofluid through a stretched rotating rigid disk in the presence of Lorentz forces and nonlinear thermal radiation,” Numer. Methods Partial Differ. Equations, vol. 38, no. 3, pp. 308–328, 2022. DOI: 10.1002/num.22620.
  • M. Nazeer, M. Irfan, F. Hussain and I. Siddique, “Entropy generation analysis in blood-gold Casson nanofluid through horizontal wavy channel with velocity and thermal slips: Applications in skin diseases,” J. Comput. Biophys. Chem., vol. 22, no. 03, pp. 259–272, 2023. DOI: 10.1142/S2737416523400021.
  • U. Khan, A. Zaib, I. Khan and K. S. Nisar, “Insight into the dynamics of transient blood conveying gold nanoparticles when entropy generation and Lorentz force are significant,” Int. Commun. Heat Mass Transfer, vol. 127, p. 105415, 2021. DOI: 10.1016/j.icheatmasstransfer.2021.105415.
  • M. U. Ashraf, M. Qasim, A. Wakif, M. I. Afridi and I. L. Animasaun, “A generalized differential quadrature algorithm for simulating magnetohydrodynamic peristaltic flow of blood-based nanofluid containing magnetite nanoparticles: a physiological application,” Numer Methods Partial Differ. Equations, vol. 38, no. 3, pp. 666–692, 2020. DOI: 10.1002/num.22676.
  • M. Hussain, U. Farooq and M. Sheremet, “Nonsimilar convective thermal transport analysis of EMHD stagnation Casson nanofluid flow subjected to particle shape factor and thermal radiations,” Int. Commun. Heat Mass Transfer, vol. 137, p. 106230, 2022. DOI: 10.1016/j.icheatmasstransfer.2022.106230.
  • A. Mathew, S. Areekara, A. S. Sabu and S. Saleem, “Significance of multiple slip and nanoparticle shape on stagnation point flow of silver-blood nanofluid in the presence of induced magnetic field,” Surf. Interfaces, vol. 25, p. 101267, 2021. DOI: 10.1016/j.surfin.2021.101267.
  • N. A. Shah, I. L. Animasaun, J. D. Chung, A. Wakif, F. I. Alao and C. S. K. Raju, “Significance of nanoparticle’s radius, heat flux due to concentration gradient, and mass flux due to temperature gradient: the case of Water conveying copper nanoparticles,” Sci. Rep., vol. 11, no. 1, p. 1882, 2021. DOI: 10.1038/s41598-021-81417-y.
  • P. Kumar, H. Poonia, L. Ali and S. Areekara, “The numerical simulation of nanoparticle size and thermal radiation with the magnetic field effect based on tangent hyperbolic nanofluid flow,” Case Stud. Therm. Eng., vol. 37, p. 102247, 2022. DOI: 10.1016/j.csite.2022.102247.
  • X. Sun, I. L. Animasaun, K. Swain, N. A. Shah, A. Wakif and P. O. Olanrewaju, “Significance of nanoparticle radius, inter-particle spacing, inclined magnetic field, and space-dependent internal heating: the case of chemically reactive water conveying copper nanoparticles,” ZAMM - J. Appl. Math. Mech./Zeitschrift Für Angew. Math. und Mech., vol. 102, no. 4, p. e202100094, 2022. DOI: 10.1002/zamm.202100094.
  • A. K. Verma, S. Rajput, K. Bhattacharyya and A. J. Chamkha, “Nanoparticle’s radius effect on unsteady mixed convective copper-water nanofluid flow over an expanding sheet in porous medium with boundary slip,” Chem. Eng. J. Adv., vol. 12, p. 100366, 2022. DOI: 10.1016/j.ceja.2022.100366.
  • A. A. Akbar, et al., “Insight into the role of nanoparticles shape factors and diameter on the dynamics of rotating water-based fluid,” Nanomaterials, vol. 12, no. 16, p. 2801, 2022. DOI: 10.3390/nano12162801.
  • P. Ragupathi, N. A. Ahammad, A. Wakif, N. A. Shah and Y. Jeon, “Exploration of multiple transfer phenomena within viscous fluid flows over a curved stretching sheet in the co-existence of gyrotactic micro-organisms and tiny particles,” Mathematics, vol. 10, no. 21, p. 4133, 2022. DOI: 10.3390/math10214133.
  • Y. S. Daniel, “Laminar convective boundary layer slip flow over a flat plate using homotopy analysis method,” J. Inst. Eng. India Ser. E, vol. 97, no. 2, pp. 115–121, 2016. DOI: 10.1007/s40034-016-0084-6.
  • M. M. Nandeppanavar, K. Vajravelu, M. S. Abel and M. N. Siddalingappa, “Second order slip flow and heat transfer over a stretching sheet with non-linear Navier boundary condition,” Int. J. Therm. Sci., vol. 58, pp. 143–150, 2012. DOI: 10.1016/j.ijthermalsci.2012.02.019.
  • L. Wu, “A slip model for rarefied gas flows at arbitrary Knudsen number,” Appl. Phys. Lett., vol. 93, no. 25, pp. 253103, 2008. DOI: 10.1063/1.3052923.
  • Z. Abdelmalek, et al., “Mixed radiated magneto Casson fluid flow with Arrhenius activation energy and Newtonian heating effects: flow and sensitivity analysis,” Alexandria Eng. J., vol. 59, no. 5, pp. 3991–4011, 2020. DOI: 10.1016/j.aej.2020.07.006.
  • M. Senapati, S. K. Parida, K. Swain and S. M. Ibrahim, “Analysis of variable magnetic field on chemically dissipative MHD boundary layer flow of Casson fluid over a nonlinearly stretching sheet with slip conditions,” Int. J. Ambient Energy, vol. 43, no. 1, pp. 3712–3726, 2022. DOI: 10.1080/01430750.2020.1831601.
  • A. M. Obalalu, “Chemical entropy generation and second-order slip condition on hydrodynamic Casson nanofluid flow embedded in a porous medium: A fast convergent method,” J. Egypt Math. Soc., vol. 30, no. 1, p. 6, 2022. DOI: 10.1186/s42787-022-00140-3.
  • A. S. Sabu, J. Mackolil, B. Mahanthesh and A. Mathew, “Numerical study of Reiner-Rivlin nanoliquid flow due to a rotating disk with Joule heating and non-uniform heat source using Bulirsch-Stoer algorithm,” Waves Random Complex Media, pp. 1–23, 2022. DOI: 10.1080/17455030.2022.2111476.
  • B. Mahanthesh, I. L. Animasaun, M. Rahimi-Gorji and I. M. Alarifi, “Quadratic convective transport of dusty Casson and dusty Carreau fluids past a stretched surface with nonlinear thermal radiation, convective condition and non-uniform heat source/sink,” Phys. A Stat. Mech. Appl., vol. 535, pp. 122471, 2019. DOI: 10.1016/j.physa.2019.122471.
  • B. Mahanthesh, K. Thriveni and G. Lorenzini, “Significance of nonlinear Boussinesq approximation and non-uniform heat source/sink on nanoliquid flow with convective heat condition: Sensitivity analysis,” Eur. Phys. J. Plus, vol. 136, no. 4, pp. 4–418, 2021. DOI: 10.1140/epjp/s13360-021-01416-w.
  • Y.-X. Li, et al., “Dynamics of Casson nanoparticles with non-uniform heat source/sink: a numerical analysis,” Ain Shams Eng. J., vol. 13, no. 1, p. 101496, 2022. DOI: 10.1016/j.asej.2021.05.010.
  • S. Shaw, A. J. Chamkha, A. Wakif, O. D. Makinde and M. K. Nayak, “Effects of Wu’s slip and non-uniform source/sink on entropy optimized radiative magnetohydrodynamic up/down flow of nanofluids,” J. Nanofluids, vol. 11, no. 3, pp. 305–317, 2022. DOI: 10.1166/jon.2022.1840.
  • M. Saqlain, M. I. Anwar and M. Waqas, “Transportation of heat and mass of nonlinear mixed convective boundary flow of Casson fluid with generalized Fourier’s and Fick’s laws and stratification effect,” Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci., vol. 236, no. 7, pp. 3387–3497, 2022. DOI: 10.1177/09544062211039531.
  • M. R. Khan, A. S. Al-Johani, A. M. A. Elsiddieg, T. Saeed and A. A. A. Mousa, “The computational study of heat transfer and friction drag in an unsteady MHD radiated Casson fluid flow across a stretching/shrinking surface,” Int. Commun. Heat Mass Transfer, vol. 130, p. 105832, 2022. DOI: 10.1016/j.icheatmasstransfer.2021.105832.
  • Y.-Q. Song, et al., “Unsteady mixed convection flow of magneto-Williamson nanofluid due to stretched cylinder with significant non-uniform heat source/sink features,” Alexandria Eng. J., vol. 61, no. 1, pp. 195–206, 2022. DOI: 10.1016/j.aej.2021.04.089.
  • G. Rasool, A. Wakif, X. Wang, A. Shafiq and A. J. Chamkha, “Numerical passive control of alumina nanoparticles in purely aquatic medium featuring EMHD driven non-Darcian nanofluid flow over convective Riga surface,” Alexandria Eng. J., vol. 68, pp. 747–762, 2023. DOI: 10.1016/j.aej.2022.12.032.
  • Y. S. Daniel, Z. A. Aziz, Z. Ismail and F. Salah, “Entropy analysis in electrical magnetohydrodynamic (MHD) flow of nanofluid with effects of thermal radiation, viscous dissipation, and chemical reaction,” Theor. Appl. Mech. Lett., vol. 7, no. 4, pp. 235–242, 2017. DOI: 10.1016/j.taml.2017.06.003.
  • Y. S. Daniel, Z. A. Aziz, Z. Ismail and F. Salah, “Double stratification effects on unsteady electrical MHD mixed convection flow of nanofluid with viscous dissipation and Joule heating,” J. Appl. Res. Technol., vol. 15, no. 5, pp. 464–476, 2017. DOI: 10.1016/j.jart.2017.05.007.
  • Y. S. Daniel, Z. A. Aziz, Z. Ismail and F. Salah, “Thermal radiation on unsteady electrical MHD flow of nanofluid over stretching sheet with chemical reaction,” J. King Saud Univ. – Sci., vol. 31, no. 4, pp. 804–812, 2019. DOI: 10.1016/j.jksus.2017.10.002.
  • Y. S. Daniel, Z. A. Aziz, Z. Ismail, A. Bahar and F. Salah, “Stratified electromagnetohydrodynamic flow of nanofluid supporting convective role,” Korean J. Chem. Eng., vol. 36, no. 7, pp. 1021–1032, 2019. DOI: 10.1007/s11814-019-0247-5.
  • Y. S. Daniel, Z. A. Aziz, Z. Ismail and F. Salah, “Thermal stratification effects on MHD radiative flow of nanofluid over nonlinear stretching sheet with variable thickness,” J. Comput. Des. Eng., vol. 5, no. 2, pp. 232–242, 2018. DOI: 10.1016/j.jcde.2017.09.001.
  • Y. S. Daniel, Z. A. Aziz, Z. Ismail and F. Salah, “Impact of thermal radiation on electrical MHD flow of nanofluid over nonlinear stretching sheet with variable thickness,” Alexandria Eng. J., vol. 57, no. 3, pp. 2187–2197, 2018. DOI: 10.1016/j.aej.2017.07.007.
  • Y. S. Daniel, Z. A. Aziz, Z. Ismail and F. Salah, “Numerical study of entropy analysis for electrical unsteady natural magnetohydrodynamic flow of nanofluid and heat transfer,” Chin. J. Phys., vol. 55, no. 5, pp. 1821–1848, 2017. DOI: 10.1016/j.cjph.2017.08.009.
  • G. Rasool, N. A. Shah, E. R. El-Zahar and A. Wakif, “Numerical investigation of EMHD nanofluid flows over a convectively heated riga pattern positioned horizontally in a Darcy-Forchheimer porous medium: Application of passive control strategy and generalized transfer laws,” Waves Random Complex Media, pp. 1–20, 2022. DOI: 10.1080/17455030.2022.2074571.
  • M. Zaydan, N. H. Hamad, A. Wakif, A. Dawar and R. Sehaqui, “Generalized differential quadrature analysis of electro‐magneto‐hydrodynamic dissipative flows over a heated Riga plate in the presence of a space‐dependent heat source: the case for strong suction effect,” Heat Transfer, vol. 51, no. 2, pp. 2063–2078, 2022. DOI: 10.1002/htj.22388.
  • N. A. Shah, A. Wakif, E. R. El-Zahar, S. Ahmad and S.-J. Yook, “Numerical simulation of a thermally enhanced EMHD flow of a heterogeneous micropolar mixture comprising (60%)-ethylene glycol (EG), (40%)-water (W), and copper oxide nanomaterials (CuO),” Case Stud. Therm. Eng., vol. 35, p. 102046, 2022. DOI: 10.1016/j.csite.2022.102046.
  • T. S. Neethu, S. Areekara, A. S. Sabu, A. Mathew and K. K. Anakha, “Bioconvective electromagnetohydrodynamic hybrid nanoliquid flow over a stretching sheet with stratification effects: A four-factor response surface optimized model,” Waves Random Complex Media, pp. 1–26, 2022. DOI: 10.1080/17455030.2022.2066218.
  • A. Wakif, A. Chamkha, I. L. Animasaun, M. Zaydan, H. Waqas and R. Sehaqui, “Novel physical insights into the thermodynamic irreversibilities within dissipative EMHD fluid flows past over a moving horizontal riga plate in the coexistence of wall suction and joule heating effects: a comprehensive numerical investigation,” Arab. J. Sci. Eng., vol. 45, no. 11, pp. 9423–9438, 2020. DOI: 10.1007/s13369-020-04757-3.
  • G. Rasool and A. Wakif, “Numerical spectral examination of EMHD mixed convective flow of second-grade nanofluid towards a vertical Riga plate using an advanced version of the revised Buongiorno’s nanofluid model,” J. Therm. Anal. Calorim., vol. 143, no. 3, pp. 2379–2393, 2021. DOI: 10.1007/s10973-020-09865-8.
  • Y. S. Daniel, A. Usman and U. Haruna, “Effect of electric field flow on nanofluid over stretchable surface,” Sci. World J., vol. 17, no. 1, pp. 186–190, 2022.
  • S. Areekara, A. S. Sabu, A. Mathew and B. Saravanan, “Statistical analysis on the stratification effects of bioconvective EMHD nanofluid flow past a stretching sheet: application in theranostics,” Heat Transfer, vol. 50, no. 7, pp. 6680–6702, 2021. DOI: 10.1002/htj.22198.
  • P. Kumar, H. Poonia, S. Areekara, A. S. Sabu, A. Mathew and L. Ali, “Significance of irregular heat source and Arrhenius energy on electro-magnetohydrodynamic hybrid nanofluid flow over a rotating stretchable disk with nonlinear radiation,” Numer. Heat Transf. Part A Appl., pp. 1–23, 2023. DOI: 10.1080/10407782.2023.2212130.
  • Y. S. Daniel, Z. A. Aziz, Z. Ismail and F. Salah, “Effects of slip and convective conditions on MHD flow of nanofluid over a porous nonlinear stretching/shrinking sheet,” Aust. J. Mech. Eng., vol. 16, no. 3, pp. 1–17, 2017. DOI: 10.1080/14484846.2017.1358844.
  • J. Raza, M. Farooq, F. Mebarek-Oudina and B. Mahanthesh, “Multiple slip effects on MHD non-Newtonian nanofluid flow over a nonlinear permeable elongated sheet,” Multidiscipl. Model. Mater. Struct., vol. 15, no. 5, pp. 913–931, 2019. DOI: 10.1108/MMMS-11-2018-0190.
  • J.-C. Zhou, et al., “Unsteady radiative slip flow of MHD Casson fluid over a permeable stretched surface subject to a non-uniform heat source,” Case Stud. Therm. Eng., vol. 26, pp. 101141, 2021. DOI: 10.1016/j.csite.2021.101141.
  • S. Areekara, J. Mackolil, B. Mahanthesh and A. Mathew, “Bulirsch-Stoer computations for bioconvective magnetized nanomaterial flow subjected to convective thermal heating and Stefan blowing: A revised Buongiorno model for theranostic applications,” Waves Random Complex Media, pp. 1–33, 2022. DOI: 10.1080/17455030.2022.2102692.
  • T. Fang and A. Aziz, “Viscous flow with second-order slip velocity over a stretching sheet,” Z. Naturforsch. A, vol. 65, no. 12, pp. 1087–1092, 2010. DOI: 10.1515/zna-2010-1212.
  • M. M. Nandeppanavar, K. Vajravelu, M. S. Abel and C.-O. Ng, “Heat transfer over a nonlinearly stretching sheet with non-uniform heat source and variable wall temperature,” Int. J. Heat Mass Transfer, vol. 54, no. 23-24, pp. 4960–4965, 2011. DOI: 10.1016/j.ijheatmasstransfer.2011.07.009.
  • S. Areekara, J. Mackolil, B. Mahanthesh, A. Mathew and P. Rana, “A study on nanoliquid flow with irregular heat source and realistic boundary conditions: a modified Buongiorno model for biomedical applications,” ZAMM - J. Appl. Math. Mech./Z. Angew. Math. und Mech., vol. 102, no. 3, p. e202100167, 2022. DOI: 10.1002/zamm.202100167.
  • J. Kierzenka and L. F. Shampine, “A BVP solver that controls residual and error,” J. Numer. Anal. Ind. Appl. Math., vol. 3, no. 1–2, pp. 27–41, 2008.
  • P. Rana and R. Bhargava, “Flow and heat transfer of a nanofluid over a nonlinearly stretching sheet: a numerical study,” Commun. Nonlinear Sci. Numer. Simul., vol. 17, no. 1, pp. 212–226, 2012. DOI: 10.1016/j.cnsns.2011.05.009.
  • F. Mabood, W. A. Khan and A. I. M. Ismail, “MHD boundary layer flow and heat transfer of nanofluids over a nonlinear stretching sheet: A numerical study,” J. Magn. Magn. Mater., vol. 374, pp. 569–576, 2015. DOI: 10.1016/j.jmmm.2014.09.013.
  • Y. S. Daniel, Z. A. Aziz, Z. Ismail and F. Salah, “Hydromagnetic slip flow of nanofluid with thermal stratification and convective heating,” Aust. J. Mech. Eng., vol. 18, no. 2, pp. 147–155, 2020. DOI: 10.1080/14484846.2018.1432330.
  • Y. S. Daniel, Z. A. Aziz, Z. Ismail, A. Bahar and F. Salah, “Slip role for unsteady MHD mixed convection of nanofluid over stretching sheet with thermal radiation and electric field,” Indian J. Phys., vol. 94, no. 2, pp. 195–207, 2020. DOI: 10.1007/s12648-019-01474-y.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.