Publication Cover
Numerical Heat Transfer, Part B: Fundamentals
An International Journal of Computation and Methodology
Volume 85, 2024 - Issue 6
78
Views
0
CrossRef citations to date
0
Altmetric
Articles

Quadtree SBFEM and optimization based forward and inverse interval analysis for PCM-integrated walls

, &
Pages 683-705 | Received 02 Mar 2023, Accepted 13 Aug 2023, Published online: 04 Sep 2023

References

  • Y.-Z. Wang et al., “A polyethylene glycol/hydroxyapatite composite phase change material for thermal energy storage,” Appl. Therm. Eng., vol. 113, pp. 1475–1482, Feb. 2017. DOI: 10.1016/j.applthermaleng.2016.11.159.
  • S.-H. Wi et al., “Dynamic heat transfer and thermal performance evaluation of PCM-doped hybrid hollow plaster panels for buildings,” J. Hazard. Mater., vol. 374, pp. 428–436, Jul. 2019. DOI: 10.1016/j.jhazmat.2019.03.136.
  • F. Kuznik et al., “A review on phase change materials integrated in building walls,” Renew. Sustain. Energy Rev., vol. 15, no. 1, pp. 379–391, Jan. 2011. DOI: 10.1016/j.rser.2010.08.019.
  • T. Yan et al., “Performance evaluation of a PCM-embedded wall integrated with a nocturnal sky radiator,” Energy, vol. 210, pp. 118412, Nov. 2020. DOI: 10.1016/j.energy.2020.118412.
  • S. B. Sadineni, S. Madala, and R. F. Boehm, “Passive building energy savings: a review of building envelope components,” Renew. Sustain. Energy Rev., vol. 15, no. 8, pp. 3617–3631, Oct. 2011. DOI: 10.1016/j.rser.2011.07.014.
  • U. Stritih et al., “Integration of passive PCM technologies for net-zero energy buildings,” Sustain. Cities Soc., vol. 41, pp. 286–295, Aug. 2018. DOI: 10.1016/j.scs.2018.04.036.
  • W. Y. Lin et al., “Optimal design of a thermal energy storage system using phase change materials for a netzero energy solar decathlon house,” Energy Build., vol. 208, pp. 109626, Feb. 2020. DOI: 10.1016/j.enbuild.2019.109626.
  • P. K. S. Rathore and S. K. Shukla, “Enhanced thermophysical properties of organic PCM through shape stabilization for thermal energy storage in buildings: a state of the art review,” Energy Build., vol. 236, pp. 110799, Apr. 2021. DOI: 10.1016/j.enbuild.2021.110799.
  • B. Lamrani, K. Johannes, and F. Kuznik, “Phase change materials integrated into building walls: an updated review,” Renew. Sustain. Energy Rev., vol. 140, pp. 110751, Apr. 2021. DOI: 10.1016/j.rser.2021.110751.
  • Y. Gao and X. Meng, “A comprehensive review of integrating phase change materials in building bricks: methods, performance and applications,” J. Energy Storage, vol. 62, pp. 106913, Jun. 2023. DOI: 10.1016/j.est.2023.106913.
  • X. N. Wang et al., “A critical review on phase change materials (PCM) for sustainable and energy efficient building: design, characteristic, performance and application,” Energy Build., vol. 260, pp. 111923, Apr. 2022. DOI: 10.1016/j.enbuild.2022.111923.
  • Y. Zhang et al., “Application of latent heat thermal energy storage in buildings: state-of-the-art and outlook,” Build. Environ., vol. 42, no. 6, pp. 2197–2209, Jun. 2007. DOI: 10.1016/j.buildenv.2006.07.023.
  • Y. K. Zhou, “Demand response flexibility with synergies on passive PCM walls, BIPVs, and active air-conditioning system in a subtropical climate,” Renew. Energy, vol. 199, pp. 204–225, Nov. 2022. DOI: 10.1016/j.renene.2022.08.128.
  • W. W. Sun et al., “Numerical modeling and optimization of annual thermal characteristics of an office room with PCM active–passive coupling system,” Energy Build., vol. 254, pp. 111629, Jan. 2022. DOI: 10.1016/j.enbuild.2021.111629.
  • Y.-P. Zhang et al., “Influence of additives on thermal conductivity of shape-stabilized phase change material,” Sol. Energy Mater. Sol. Cells, vol. 90, no. 11, pp. 1692–1702, Jul. 2006. DOI: 10.1016/j.solmat.2005.09.007.
  • X. Y. Zheng and Y. K. Zhou, “A three-dimensional unsteady numerical model on a novel aerogel-based PV/T-PCM system with dynamic heat-transfer mechanism and solar energy harvesting analysis,” Appl. Energy, vol. 338, pp. 120899, May 2023. DOI: 10.1016/j.apenergy.2023.120899.
  • M. Alam et al., “Energy saving potential of phase change materials in major Australian cities,” Energy Build., vol. 78, pp. 192–201, Aug. 2014. DOI: 10.1016/j.enbuild.2014.04.027.
  • W. Xiao, X. Wang, and Y.-P. Zhang, “Thermal analysis of lightweight wall with shape-stabilized PCM panel for summer insulation,” J. Eng. Thermophys., vol. 30, pp. 1561–1563, Sep. 2009. DOI: 10.3321/j.issn:0253-231X.2009.09.036.
  • Y. P. Zhang et al., “ Preparation, thermal performance and application of shape-stabilized PCM in energy efficient buildings,” Energy Build., vol. 38, no. 10, pp. 1262–1269, Oct. 2006. DOI: 10.1016/j.enbuild.2006.02.009.
  • A. C. Evers, M. A. Medina, and Y. Fang, “Evaluation of the thermal performance of frame walls enhanced with paraffin and hydrated salt phase change materials using a dynamic wall simulator,” Build. Environ., vol. 45, no. 8, pp. 1762–1768, Aug. 2010. DOI: 10.1016/j.buildenv.2010.02.002.
  • R. Cai et al., “Review on optimization of phase change parameters in phase change material building envelopes,” J. Build. Eng., vol. 35, pp. 101979, Mar. 2021. DOI: 10.1016/j.jobe.2020.101979.
  • M. Saffari et al., “Simulation-based optimization of PCM melting temperature to improve the energy performance in buildings,” Appl. Energy, vol. 202, pp. 420–434, Sep. 2017. DOI: 10.1016/j.apenergy.2017.05.107.
  • X.-Q. Sun et al., “Energy and economic analysis of a building enclosure outfitted with a phase change material board (PCMB),” Energy Convers. Manage., vol. 83, pp. 73–78, Jul. 2014. DOI: 10.1016/j.enconman.2014.03.035.
  • E. Markarian and F. Fazelpour, “Multi-objective optimization of energy performance of a building considering different configurations and types of PCM,” Sol. Energy, vol. 191, pp. 481–496, Oct. 2019. DOI: 10.1016/j.solener.2019.09.003.
  • R. A. Kishore et al., “Optimizing PCM-integrated walls for potential energy savings in U.S. Buildings,” Energy Build., vol. 226, pp. 110355, Nov. 2020. DOI: 10.1016/j.enbuild.2020.110355.
  • Y. K. Zhou, S. Q. Zheng, and G. Q. Zhang, “Artificial neural network based multivariable optimization of a hybrid system integrated with phase change materials, active cooling and hybrid ventilations,” Energy Convers. Manage., vol. 197, pp. 111859, Oct. 2019. DOI: 10.1016/j.enconman.2019.111859.
  • Y. K. Zhou, S. Q. Zheng, and G. Q. Zhang, “Machine learning-based optimal design of a phase change material integrated renewable system with on-site PV, radiative cooling and hybrid ventilations–study of modelling and application in five climatic regions,” Energy, vol. 192, pp. 116608, Feb. 2020. DOI: 10.1016/j.energy.2019.116608.
  • Z. Y. Li, Y. Q. Zhao, and X. Zou, “The research for uncertainty heat transfer process of phase change thermal storage based on Monte Carlo method,” AMM, vol. 291–294, pp. 632–635, Feb. 2013. DOI: 10.4028/www.scientific.net/AMM.291-294.632.
  • Y. Zhou et al., “Passive and active phase change materials integrated building energy systems with advanced machine-learning based climate-adaptive designs, intelligent operations, uncertainty-based analysis and optimisations: a state-of-the-art review,” Renew. Sustain. Energy Rev., vol. 130, pp. 109889, Sep. 2020. DOI: 10.1016/j.rser.2020.109889.
  • Y. K. Zhou, S. Q. Zheng, and G. Q. Zhang, “A state-of-the-art-review on phase change materials integrated cooling systems for deterministic parametrical analysis, stochastic uncertainty-based design, single and multi-objective optimisations with machine learning applications,” Energy Build., vol. 220, pp. 110013, Aug. 2020. DOI: 10.1016/j.enbuild.2020.110013.
  • Y. K. Zhou, S. Q. Zheng, and G. Q. Zhang, “Machine-learning based study on the on-site renewable electrical performance of an optimal hybrid PCMs integrated renewable system with high-level parameters’ uncertainties,” Renew. Energy, vol. 151, pp. 403–418, May 2020. DOI: 10.1016/j.renene.2019.11.037.
  • Y. K. Zhou and S. Q. Zheng, “Multi-level uncertainty optimisation on phase change materials integrated renewable systems with hybrid ventilations and active cooling,” Energy, vol. 202, pp. 117747, Jul. 2020. DOI: 10.1016/j.energy.2020.117747.
  • J. Mazo et al., “Uncertainty propagation and sensitivity analysis of thermo-physical properties of phase change materials (PCM) in the energy demand calculations of a test cell with passive latent thermal storage,” Appl. Therm. Eng., vol. 90, pp. 596–608, Nov. 2015. DOI: 10.1016/j.applthermaleng.2015.07.047.
  • R. Peng, H. Yang, and Y. Xue, “Full-scale bounds estimation for the nonlinear transient heat transfer problems with interval uncertainties,” Int. J. Comput. Methods, vol. 18, no. 08, pp. 2150026, Apr. 2021. DOI: 10.1142/S0219876221500262.
  • W. Tian et al., “Transient response bounds analysis of heat transfer problems based on interval process model,” Int. J. Heat Mass Transf., vol. 148, pp. 119027, Feb. 2020. DOI: 10.1016/j.ijheatmasstransfer.2019.119027.
  • C. Wang and H. G. Matthies, “Non-probabilistic interval process model and method for uncertainty analysis of transient heat transfer problem,” Int. J. Therm. Sci., vol. 144, pp. 147–157, Oct. 2019. DOI: 10.1016/j.ijthermalsci.2019.06.002.
  • X. Du, Z. Tang, and Q. Xue, “Interval inverse analysis of hyperbolic heat conduction problem,” Int. Commun. Heat Mass Transf., vol. 54, pp. 75–80, May 2014. DOI: 10.1016/j.icheatmasstransfer.2014.03.014.
  • Y. Xue and H. Yang, “A numerical method to estimate temperature intervals for transient convection–diffusion heat transfer problems,” Int. Commun. Heat Mass Transf., vol. 47, pp. 56–61, Oct. 2013. DOI: 10.1016/j.icheatmasstransfer.2013.07.005.
  • W. Chong and Z. Qiu, “Interval analysis of steady-state heat convection–diffusion problem with uncertain-but-bounded parameters,” Int. J. Heat Mass Transf., vol. 91, pp. 355–362, Dec. 2015. DOI: 10.1016/j.ijheatmasstransfer.2015.07.115.
  • C. Wang and H. G. Matthies, “Novel interval theory-based parameter identification method for engineering heat transfer systems with epistemic uncertainty,” Int. J. Numer. Methods Eng., vol. 115, no. 6, pp. 756–770, Apr. 2018. DOI: 10.1002/nme.5824.
  • H. Ouyang et al., “Correlation propagation for uncertainty analysis of structures based on non-probabilistic ellipsoidal model,” Appl. Math. Modell., vol. 88, pp. 190–207, Dec. 2020. DOI: 10.1016/j.apm.2020.06.009.
  • Z. Y. Wang et al., “The interval analysis for uncertainty heat transfer process of phase change thermal storage based on perturbation method,” AMR, vol. 838–841, pp. 1939–1943, Nov. 2013. DOI: 10.4028/www.scientific.net/AMR.838-841.1939.
  • Y. He, X. Dong, and H. Yang, “A new adaptive algorithm for phase change heat transfer problems based on quadtree SBFEM and smoothed effective heat capacity method,” Numer. Heat Transf. Part B, vol. 75, no. 2, pp. 111–126, May 2019. DOI: 10.1080/10407790.2019.1607116.
  • Y. He, H. Yang, and A. J. Deeks, “An element-free Galerkin scaled boundary method for steady-state heat transfer problems,” Numer. Heat Transf. Part B, vol. 64, no. 3, pp. 199–217, Jun. 2013. DOI: 10.1080/10407790.2013.791777.
  • E. T. Ooi, C. Song, F. Tin-Loi, and Z. Yang, “Polygon scaled boundary finite elements for crack propagation modelling: scaled boundary polygon finite elements for crack propagation,” Int. J. Numer. Meth. Eng., vol. 91, no. 3, pp. 319–342, Mar. 2012. DOI: 10.1002/nme.4284.
  • A. Saputra, H. Talebi, D. Tran, C. Birk, and C. Song, “Automatic image‐based stress analysis by the scaled boundary finite element method,” Int. J. Numer. Meth. Eng., vol. 109, no. 5, pp. 697–738, 2017. May 2016. DOI: 10.1002/nme.5304.
  • X. Chen, T. Luo, E. T. Ooi, E. H. Ooi, and C. Song, “A quadtree-polygon-based scaled boundary finite element method for crack propagation modeling in functionally graded materials,” Theor. Appl. Fract. Mech., vol. 94, pp. 120–133, Apr. 2018. DOI: 10.1016/j.tafmec.2018.01.008.
  • C. Ran and H. Yang, “Sensitivity analysis-based full-scale bounds estimation for 2-D interval bi-modular problems,” Arch. Appl. Mech., vol. 91, no. 7, pp. 3011–3034, Apr. 2021. DOI: 10.1007/s00419-021-01945-x.
  • H. Guo et al., “A quadtree-polygon based scaled boundary finite element method for image-based mesoscale fracture modelling in concrete,” Eng. Fract. Mech., vol. 211, pp. 420–441, Apr. 2019. DOI: 10.1016/j.engfracmech.2019.02.021.
  • C. Song and J. P. Wolf, “The scaled boundary finite-element method—alias consistent infinitesimal finite-element cell method—for elastodynamics,” Comput. Methods Appl. Mech. Eng., vol. 147, no. 3–4, pp. 329–355, Aug. 1997. DOI: 10.1016/S0045-7825(97)00021-2.
  • C. Wang, Z. Qiu, and Z. Y. Yang, “Collocation methods for uncertain heat convection-diffusion problem with interval input parameters,” Int. J. Therm. Sci., vol. 107, pp. 230–236, Sep. 2016. DOI: 10.1016/j.ijthermalsci.2016.04.012.
  • S. Chen, B. Merriman, S. Osher, and P. Smereka, “A simple level set method for solving Stefan problems,” J. Comput. Phys., vol. 135, no. 1, pp. 8–29, Sep. 1997. DOI: 10.1006/jcph.1997.5721.
  • H. Yang and Y. He, “Solving heat transfer problems with phase change via smoothed effective heat capacity and element-free Galerkin methods,” Int. Commun. Heat Mass Transf., vol. 37, no. 4, pp. 385–392, Apr. 2010. DOI: 10.1016/j.icheatmasstransfer.2009.12.002.
  • R. W. Lewis and K. Ravindran, “Finite element simulation of metal casting,” Int. J. Numer. Meth. Eng., vol. 47, no. 1–3, pp. 29–59, Feb. 2000. DOI: 10.1002/(SICI)1097-0207(20000110/30)47:1/3<29::AID-NME760>3.0.CO;2-X.
  • B. Spalding, “The finite element method in heat-transfer analysis,” Int. J. Heat Mass Transf., vol. 41, no. 16, pp. 2563–2564, Aug. 1998. DOI: 10.1016/S0017-9310(96)00312-2.
  • C. R. Dyer, “Computing the Euler number of an image from its quadtree,” Comput. Graph. Image Process., vol. 13, no. 3, pp. 270–276, Jul. 1980. DOI: 10.1016/0146-664X(80)90050-7.
  • H. Sundar, R. S. Sampath, and G. Biros, “Bottom-up construction and 2:1 balance refinement of linear octrees in parallel,” SIAM J. Sci. Comput., vol. 30, no. 5, pp. 2675–2708, Jul. 2008. DOI: 10.1137/070681727.
  • Y. He, J. Guo, H. Yang, and C. R. Dyer, “Image-based numerical prediction for effective thermal conductivity of heterogeneous materials: a quadtree based scaled boundary finite element method,” Int. J. Heat Mass Transf., vol. 128, pp. 335–343, Jan. 2019. DOI: 10.1016/j.ijheatmasstransfer.2018.08.099.
  • N. Provatas, N. Goldenfeld, and J. Dantzig, “Adaptive mesh refinement computation of solidification microstructures using dynamic data structures,” J. Comput. Phys., vol. 148, no. 1, pp. 265–290, Jan. 1999. DOI: 10.1006/jcph.1998.6122.
  • Z. Liu et al., “Influence of phase change material (PCM) parameters on the thermal performance of lightweight building walls with different thermal resistances,” Case Stud. Therm. Eng., vol. 31, pp. 101844, Feb. 2022. DOI: 10.1016/j.csite.2022.101844.
  • The MathWorks, Inc., Matlab Optimization Toolbox User’s Guide (R2018A), 2018.
  • Y. Q. He and H. T. Yang, “Solving inverse couple-stress problems via an element-free Galerkin (EFG) method and Gauss–Newton algorithm,” Finite Elem. Anal. Des., vol. 46, no. 3, pp. 257–264, Mar. 2010. DOI: 10.1016/j.finel.2009.09.009.
  • H. Wang and S. Xiang S, “On the convergence rates of Legendre approximation,” Math. Comp., vol. 81, no. 278, pp. 861–877, Apr. 2011. DOI: 10.1090/S0025-5718-2011-02549-4.
  • C. Ran and H. Yang, H., “A new numerical technique for interval analysis of convection-diffusion heat transfer problems using LSE and optimization algorithm,” Numer. Heat Transf. Part B, vol. 77, no. 3, pp. 195–214, Nov. 2020. DOI: 10.1080/10407790.2019.1693188.
  • B. Ganapathysubramanian and N. Zabaras, “Sparse grid collocation schemes for stochastic natural convection problems,” J. Comput. Phys., vol. 225, no. 1, pp. 652–685, Jul. 2007. DOI: 10.1016/j.jcp.2006.12.014.
  • A. Klimke and B. Wohlmuth, “Computing expensive multivariate functions of fuzzy numbers using sparse grids,” Fuzzy Sets Syst., vol. 154, no. 3, pp. 432–453, Sep. 2005. DOI: 10.1016/j.fss.2005.02.017.
  • S. Smolyak, “Computing expensive multivariate functions of fuzzy numbers using sparse grids,” Dokl. Akad. Nauk SSSR Syst., vol. 148, no. 5, pp. 1042–1045, Jan. 1963.
  • K. L. Judd, L. Maliar, S. Maliar, and R. Valero, “Smolyak method for solving dynamic economic models: Lagrange interpolation, anisotropic grid and adaptive domain,” J. Econ. Dyn. Control, vol. 44, pp. 92–123, Jul. 2014. DOI: 10.1016/j.jedc.2014.03.003.
  • A. J. Deeks and J. P. Wolf, “A virtual work derivation of the scaled boundary finite-element method for elastostatics,” Comput. Mech., vol. 28, no. 6, pp. 489–504, Jun. 2002. DOI: 10.1007/s00466-002-0314-2.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.