Publication Cover
Numerical Heat Transfer, Part B: Fundamentals
An International Journal of Computation and Methodology
Volume 85, 2024 - Issue 6
80
Views
0
CrossRef citations to date
0
Altmetric
Articles

Mitigation of thermal runaway in air cooled Li-ion batteries using a novel cell arrangement coupled with air flow improviser: A numerical investigation and optimization

ORCID Icon & ORCID Icon
Pages 736-756 | Received 07 Jun 2023, Accepted 25 Aug 2023, Published online: 07 Sep 2023

References

  • R. Garcia-Valle and J. A. P. Lopes, Electric vehicle integration into modern power networks, SSBM, New York, NY: Springer, pp. 1–325, Jan. 2013. DOI: 10.1007/978-1-4614-0134-6.
  • “India electric scooter and motorcycle market | industry size, share, growth forecast 2025.” https://www.psmarketresearch.com/market-analysis/india-electric-scooter-and-motorcycle-market. Accessed: Nov. 30, 2022.
  • “Govt policy and report.” https://www.smev.in/govt-notification.php. Accessed: Jul. 10, 2023.
  • “SMEV – Society of Manufacturers of Electric Vehicles.” https://www.smev.in/. Accessed: Oct. 7, 2022.
  • B. S. Yilbas, M. K. Anwar, and S. Z. Shuja, “A mobile thermal battery and thermal energy storage enhancement,” Numer. Heat Transf. A Appl., vol. 69, no. 11, pp. 1297–1309, 2016. DOI: 10.1080/10407782.2016.1139914.
  • B. Chidambaranathan et al., “Thermal management system in electric vehicle batteries for environmental sustainability,” Environ. Qual. Manage., 2023. in press, DOI: 10.1002/tqem.22001.
  • M. Safdari, S. Sadeghzadeh, and R. Ahmadi, “Tailoring the life cycle of lithium-ion batteries with a passive cooling system: a comprehensive dynamic model,” Int. J. Energy Res., vol. 45, no. 5, pp. 7884–7902, 2021. DOI: 10.1002/er.6373.
  • H. Fathabadi, “Numerical investigation of the effect of prepared phase change material-expanded graphite composite and vertical air ducts on the thermal performance of a Li-ion battery,” Numer. Heat Transf. B Fundam., vol. 80, no. 1–2, pp. 29–37, 2021. DOI: 10.1080/10407790.2021.1941649.
  • A. Kumar Thakur et al., “A state-of-the art review on advancing battery thermal management systems for fast-charging,” Appl. Therm. Eng., vol. 226, pp. 120303, 2023. DOI: 10.1016/j.applthermaleng.2023.120303.
  • R. D. Jilte, R. Kumar, and M. H. Ahmadi, “Cooling performance of nanofluid submerged vs. nanofluid circulated battery thermal management systems,” J. Clean. Prod., vol. 240, pp. 118131, Dec. 2019. DOI: 10.1016/j.jclepro.2019.118131.
  • R. Jilte, A. Afzal, Md. T. Islam, and A. M. Manokar, “Hybrid cooling of cylindrical battery with liquid channels in phase change material,” Int. J. Energy Res., vol. 45, no. 7, pp. 11065–11083, 2021. DOI: 10.1002/er.6590.
  • X. Wu et al., “Experimental and numerical study on hybrid battery thermal management system combining liquid cooling with phase change materials,” ICHMT, vol. 139, pp. 106480, 2022. DOI: 10.1016/j.icheatmasstransfer.2022.106480.
  • V. Talele, M. S. Patil, S. Panchal, R. Fraser, and M. Fowler, “Battery thermal runaway propagation time delay strategy using phase change material integrated with pyro block lining: dual functionality battery thermal design,” J. Energy Storage, vol. 65, pp. 107253, Aug. 2023. DOI: 10.1016/j.est.2023.107253.
  • V. Talele, U. Moralı, M. S. Patil, S. Panchal, and K. Mathew, “Optimal battery preheating in critical subzero ambient condition using different preheating arrangement and advance pyro linear thermal insulation,” Therm. Sci. Eng. Prog., vol. 42, pp. 101908, 2023. DOI: 10.1016/j.tsep.2023.101908.
  • S. He, B. Xiong, H. Lei, K. Dong, S. A. Khan, and J. Zhao, “Optimization of low-temperature preheating strategy for Li-ion batteries with supercooling phase change materials using response surface method,” ICHMT, vol. 142, pp. 106635, Mar. 2023. DOI: 10.1016/j.icheatmasstransfer.2023.106635.
  • R. D. Jilte, R. Kumar, M. H. Ahmadi, and L. Chen, “Battery thermal management system employing phase change material with cell-to-cell air cooling,” Appl. Therm. Eng., vol. 161, pp. 114199, Oct. 2019. DOI: 10.1016/j.applthermaleng.2019.114199.
  • R. Jilte, A. Afzal, and S. Panchal, “A novel battery thermal management system using nano-enhanced phase change materials,” Energy, vol. 219, pp. 119564, Mar. 2021. DOI: 10.1016/j.energy.2020.119564.
  • C. Kannan, R. Vignesh, C. Karthick, and B. Ashok, “Critical review towards thermal management systems of lithium-ion batteries in electric vehicle with its electronic control unit and assessment tools,” Proc. Inst. Mech. Eng. D J. Automob. Eng., vol. 235, no. 7, pp. 1783–1807, Jun. 2021. DOI: 10.1177/0954407020982865.
  • J. Kim, J. Oh, and H. Lee, “Review on battery thermal management system for electric vehicles,” Appl. Therm. Eng., vol. 149, pp. 192–212, Feb. 2019. DOI: 10.1016/j.applthermaleng.2018.12.020.
  • B. Ashok et al., “Towards safer and smarter design for lithium-ion-battery-powered electric vehicles: a comprehensive review on control strategy architecture of battery management system,” Energies, vol. 15, no. 12, pp. 4227, 2022. DOI: 10.3390/en15124227.
  • Q. L. Yue, C. X. He, M. C. Wu, and T. S. Zhao, “Advances in thermal management systems for next-generation power batteries,” Int. J. Heat Mass Transf., vol. 181, pp. 121853, Dec. 2021. DOI: 10.1016/j.ijheatmasstransfer.2021.121853.
  • P. Qin, J. Sun, X. Yang, and Q. Wang, “Battery thermal management system based on the forced-air convection: a review,” eTransportation, vol. 7, pp. 100097, Feb. 2021. DOI: 10.1016/j.etran.2020.100097.
  • B. Ashok et al., “Model based integrated control strategy for effective brake energy recovery to extend battery longevity in electric two wheelers,” Proc. Inst. Mech. Eng. D J. Automob. Eng., pp. 095440702311676, 2023. in press, DOI: 10.1177/09544070231167616.
  • L. K. Singh, G. Mishra, A. K. Sharma, and A. K. Gupta, “A numerical study on thermal management of a lithium-ion battery module via forced-convective air cooling,” Int. J. Refrig., vol. 131, pp. 218–234, Nov. 2021. DOI: 10.1016/j.ijrefrig.2021.07.031.
  • L. K. Singh, R. Kumar, A. K. Gupta, A. K. Sharma, and S. Panchal, “Computational study on hybrid air-PCM cooling inside lithium-ion battery packs with varying number of cells,” J. Energy Storage, vol. 67, pp. 107649, Sep. 2023. DOI: 10.1016/j.est.2023.107649.
  • Y. Fan, Z. Wang, X. Xiong, S. Panchal, R. Fraser, and M. Fowler, “Multi-objective optimization design and experimental investigation for a prismatic lithium-ion battery integrated with a multi-stage tesla valve-based cold plate,” Processes, vol. 11, no. 6, pp. 1618, 2023. DOI: 10.3390/pr11061618.
  • Z. Feng et al., “Optimization of the cooling performance of symmetric battery thermal management systems at high discharge rates,” Energy Fuels, vol. 37, no. 11, pp. 7990–8004, 2023. DOI: 10.1021/acs.energyfuels.3c00690.
  • J. Li, Z. Huang, M. Tang, and J. Mao, “A generalized alternating direction implicit method for transient thermal simulation of 2-D structures with locally refined grids,” Numer. Heat Transf. B Fundam., vol. 84, no. 1, pp. 99–114, 2023. DOI: 10.1080/10407790.2023.2189187.
  • F. Huang, J. Zhao, Y. Zhang, H. Zhang, C. Wang, and Z. Liu, “Numerical analysis on flow pattern and heat transfer characteristics of flow boiling in the mini-channels,” Numer. Heat Transf. B Fundam., vol. 78, no. 4, pp. 221–247, 2020. DOI: 10.1080/10407790.2020.1787032.
  • Z. Lu, X. Z. Meng, L. C. Wei, W. Y. Hu, L. Y. Zhang, and L. W. Jin, “Thermal management of densely-packed EV battery with forced air cooling strategies,” Energy Procedia, vol. 88, pp. 682–688, Jun. 2016. DOI: 10.1016/j.egypro.2016.06.098.
  • C. Wang, H. Xi, and M. Wang, “Investigation on forced air-cooling strategy of battery thermal management system considering the inconsistency of battery cells,” Appl. Therm. Eng., vol. 214, pp. 118841, Sep. 2022. DOI: 10.1016/j.applthermaleng.2022.118841.
  • A. V. Shelkea et al., “Combined numerical and experimental studies of 21700 lithium-ion battery thermal runaway induced by different thermal abuse,” Int. J. Heat Mass Transf., vol. 194, pp. 123099, Sep. 2022. DOI: 10.1016/j.ijheatmasstransfer.2022.123099.
  • C. Ding et al., “Experimental investigation of environmental pressure effects on thermal runaway properties of 21700 lithium-ion batteries with high energy density,” Case Stud. Therm. Eng., vol. 38, pp. 102349, Oct. 2022. DOI: 10.1016/j.csite.2022.102349.
  • Z. Wang, X. Jiang, W. Ke, W. Wang, S. Zhang, and B. Zhou, “Effect of lithium-ion battery diameter on thermal runaway propagation rate under one-dimensional linear arrangement,” Therm. Sci. Eng. Prog., vol. 31, pp. 101301, Jun. 2022. DOI: 10.1016/j.tsep.2022.101301.
  • W. Zhuang, Z. Liu, H. Su, and G. Chen, “An intelligent thermal management system for optimized lithium-ion battery pack,” Appl. Therm. Eng., vol. 189, pp. 116767, May 2021. DOI: 10.1016/j.applthermaleng.2021.116767.
  • L. K. Singh, A. K. Gupta, and A. K. Sharma, “Hybrid thermal management system for a lithium-ion battery module: effect of cell arrangement, discharge rate, phase change material thickness and air velocity,” J. Energy Storage, vol. 52, pp. 104907, Aug. 2022. DOI: 10.1016/j.est.2022.104907.
  • L. Cao, G. Xia, T. Li, and J. Wang, “Thermal characteristics of battery module with trapezoidal structure,” Numer. Heat Transf. A Appl., vol. 74, no. 11, pp. 1701–1714, Dec. 2018. DOI: 10.1080/10407782.2018.1517553.
  • W. Yang, F. Zhou, X. Chen, K. Li, and J. Shen, “Thermal performance of honeycomb-type cylindrical lithium-ion battery pack with air distribution plate and bionic heat sinks,” Appl. Therm. Eng., vol. 218, pp. 119299, Apr. 2023. DOI: 10.1016/j.applthermaleng.2022.119299.
  • R. D. Jilte and R. Kumar, “Numerical investigation on cooling performance of Li-ion battery thermal management system at high galvanostatic discharge,” Eng. Sci. Technol. Int. J., vol. 21, no. 5, pp. 957–969, Oct. 2018. DOI: 10.1016/j.jestch.2018.07.015.
  • A. Balaram Naik and A. Chennakeshava Reddy, “Optimization of tensile strength in TIG welding using the Taguchi method and analysis of variance (ANOVA),” Therm. Sci. Eng. Prog., vol. 8, pp. 327–339, Dec. 2018. DOI: 10.1016/j.tsep.2018.08.005.
  • L. Jiang et al., “Optimization of multi-stage constant current charging pattern based on Taguchi method for Li-ion battery,” Appl. Energy, vol. 259, pp. 114148, Feb. 2020. DOI: 10.1016/j.apenergy.2019.114148.
  • M. Al-Zareer, I. Dincer, and M. A. Rosen, “Heat transfer modeling of a novel battery thermal management system,” Numer. Heat Transf. A Appl., vol. 73, no. 5, pp. 277–290, 2018. DOI: 10.1080/10407782.2018.1439237.
  • T.-F. Yang, P.-Y. Lin, L.-T. Teng, S. Rashidi, and W.-M. Yan, “Numerical and experimental study on thermal management of NCM-21700 Li-ion battery,” J. Power Sources, vol. 548, pp. 232068, 2022. DOI: 10.1016/j.jpowsour.2022.232068.
  • Y. Li, F. Qi, H. Guo, Z. Guo, G. Xu, and J. Liu, “Numerical investigation of thermal runaway propagation in a Li-ion battery module using the heat pipe cooling system,” Numer. Heat Transf. A Appl., vol. 75, no. 3, pp. 183–199, Feb. 2019. DOI: 10.1080/10407782.2019.1580956.
  • S. Panchal, R. Khasow, I. Dincer, M. Agelin-Chaab, R. Fraser, and M. Fowler, “Numerical modeling and experimental investigation of a prismatic battery subjected to water cooling,” Numer. Heat Transf. A Appl., vol. 71, no. 6, pp. 626–637, Mar. 2017. DOI: 10.1080/10407782.2016.1277938.
  • M. Singh and R. Jilte, “Development of experimental facility for testing battery thermal management system of electrical vehicles,” Mater. Today Proc., vol. 72, pp. 1917–1924, 2023. DOI: 10.1016/j.matpr.2022.10.154.
  • Z. Gemici and M. Budakli, “Numerical study of the intensification of single-phase heat transfer in a sandwich-like channel using staggered miniature-pin fins,” Numer. Heat Transf. A Appl., pp. 1–34, 2023. in press, DOI: 10.1080/10407782.2023.2202883.
  • F. Dong, D. Song, and J. Ni, “Investigation of the effect of U-shaped mini-channel structure on the thermal performance of liquid-cooled prismatic batteries,” Numer. Heat Transf. A Appl., vol. 77, no. 1, pp. 105–120, 2020. DOI: 10.1080/10407782.2019.1685812.
  • A. Panda, A. K. Sahoo, and A. K. Rout, “Multi-attribute decision making parametric optimization and modeling in hard turning using ceramic insert through grey relational analysis: a case study,” Decis. Sci. Lett., vol. 5, no. 4, pp. 581–592, 2016. DOI: 10.5267/j.dsl.2016.3.001.
  • B. Ashok et al., “Transition to electric mobility in India: barriers exploration and pathways to powertrain shift through MCDM approach,” J. Inst. Eng. C, vol. 103, no. 5, pp. 1251–1277, 2022.
  • P. Qin, M. Liao, W. Mei, J. Sun, and Q. Wang, “The experimental and numerical investigation on a hybrid battery thermal management system based on forced-air convection and internal finned structure,” Appl. Therm. Eng., vol. 195, pp. 117212, Aug. 2021. DOI: 10.1016/j.applthermaleng.2021.117212.
  • J. Mustafa, “Numerical investigation of the effect of inlet dimensions air duct and distance of battery packs for thermal management of three lithium-ion battery packs,” J. Energy Storage, vol. 48, pp. 103959, Apr. 2022. DOI: 10.1016/j.est.2022.103959.
  • A. H. Milyani, E. T. Attar, M. J. Abdulaal, M. N. Ajour, N. H. Abu-Hamdeh, and A. Karimipour, “Thermal analysis of battery cells placed in triangular enclosures filled with PCM in the presence of forced airflow in an air duct,” J. Build. Eng., vol. 57, pp. 104887, Oct. 2022. DOI: 10.1016/j.jobe.2022.104887.
  • G. Jiang and J. Gao, “Flow and heat transfer performance of the channel with different shaped ribs cooled by mist/steam two-phase flow,” Case Stud. Therm. Eng., vol. 38, pp. 102365, Oct. 2022. DOI: 10.1016/j.csite.2022.102365.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.