Publication Cover
Numerical Heat Transfer, Part B: Fundamentals
An International Journal of Computation and Methodology
Volume 85, 2024 - Issue 6
95
Views
0
CrossRef citations to date
0
Altmetric
Articles

Active and passive control of Casson nanofluid flow on a convectively heated nonlinear stretching permeable surface with the Cattaneo–Christov double diffusion theory

, , , , &
Pages 757-775 | Received 09 Jun 2023, Accepted 01 Sep 2023, Published online: 19 Sep 2023

References

  • W. Jamshed et al., “Thermal characterization of coolant Maxwell type nanofluid flowing in parabolic trough solar collector (PTSC) used inside solar powered ship application,” Coatings, vol. 11, no. 12, pp. 1552, Dec. 2021. DOI: 10.3390/coatings11121552.
  • W. Jamshed, F. Shahzad, R. Safdar, T. Sajid, M. R. Eid, and K. S. Nisar “Implementing renewable solar energy in presence of Maxwell nanofluid in parabolic trough solar collector: A computational study.” DOI: 10.1080/17455030.2021.1989518.
  • W. Jamshed et al., “Thermal examination of renewable solar energy in parabolic trough solar collector utilizing Maxwell nanofluid: A noble case study,” Case Stud. Therm. Eng., vol. 27, pp. 101258, Oct. 2021. DOI: 10.1016/j.csite.2021.101258.
  • H. Upreti, S. K. Rawat, and M. Kumar, “Radiation and non-uniform heat sink/source effects on 2D MHD flow of CNTs-H2O nanofluid over a flat porous plate,” MMMS., vol. 16, no. 4, pp. 791–809, Jun. 2020. DOI: 10.1108/MMMS-08-2019-0153/FULL/HTML.
  • S. Nadeem and N. Abbas, “Effects of MHD on modified nanofluid model with variable viscosity in a porous medium,” Nanofluid Flow Porous Media, vol. 7, 2019.
  • S. Nadeem, M. N. Khan, and N. Abbas, “Transportation of slip effects on nanomaterial micropolar fluid flow over exponentially stretching,” Alex. Eng. J., vol. 59, no. 5, pp. 3443–3450, 2020. DOI: 10.1016/j.aej.2020.05.024.
  • M. Amjad et al., “Influence of Lorentz force and induced magnetic field effects on Casson micropolar nanofluid flow over a permeable curved stretching/shrinking surface under the stagnation region,” Surf. Interf., vol. 21, pp. 100766, 2020. DOI: 10.1016/j.surfin.2020.100766.
  • A. Kasaeian et al., “Nanofluid flow and heat transfer in porous media: A review of the latest developments,” Int. J. Heat Mass Transf., vol. 107, pp. 778–791, 2017. DOI: 10.1016/j.ijheatmasstransfer.2016.11.074.
  • M. Moghaddami, A. Mohammadzade, and S. A. V. Esfehani, “Second law analysis of nanofluid flow,” Energy Convers. Manag., vol. 52, no. 2, pp. 1397–1405, 2011. DOI: 10.1016/j.enconman.2010.10.002.
  • S. Parvin et al., “The flow, thermal and mass properties of Soret-Dufour model of magnetized Maxwell nanofluid flow over a shrinkage inclined surface,” PLoS One, vol. 17, no. 4, pp. e0267148, Apr. 2022. DOI: 10.1371/JOURNAL.PONE.0267148.
  • M. Sheikholeslami and D. D. Ganji, “Heat transfer of Cu-water nanofluid flow between parallel plates,” Powder Technol., vol. 235, pp. 873–879, 2013. DOI: 10.1016/j.powtec.2012.11.030.
  • N. H. Hamad, A. Wakif and A. Alshehri, “Towards the dynamics of a radiative-reactive magnetized viscoelastic nanofluid involving gyrotactic microorganisms and flowing over a vertical stretching sheet under multiple convective and stratification constraints,” DOI: 10.1080/17455030.2022.2100944.
  • M. Ghalandari, E. Mirzadeh Koohshahi, F. Mohamadian, S. Shamshirband, and K. W. Chau, “Numerical simulation of nanofluid flow inside a root canal,” Eng. Appl. Comput. Fluid Mech., vol. 13, no. 1, pp. 254–264, Jan. 2019. DOI: 10.1080/19942060.2019.1578696.
  • A. Mishra and H. Upreti, “A comparative study of Ag–MgO/water and Fe3O4–CoFe2O4/EG–water hybrid nanofluid flow over a curved surface with chemical reaction using Buongiorno model,” Partial Differ. Equ. Appl. Math., vol. 5, pp. 100322, Jun. 2022. DOI: 10.1016/j.padiff.2022.100322.
  • H. Darcy, The public fountains of the city of Dijon: Exposition and application of the principles to be followed and the formulas to be employed in the questions of distribution of 1856. [Online]. Available: https://books.google.com/books?hl=en&lr=&id=42EUAAAAQAAJ&oi=fnd&pg=PA1&dq=H.+Darcy,+Les+fontaines+publiques+de+la+ville+de+Dijon:+Exposition+et+application+des+principes+a+suivre+et+des+formules+a+employer+dans+les+questions+de+distribution+d’eau%3B+ouvrage+terminé+par+un+appendice+relatif+aux+fournitures+d’eau+de+plusieurs+v&ots=w1J0nBYFYj&sig=9oGAHqkAZ9Dq8dNRXrCbZ5Q52lQ. Accessed: Oct. 23, 2022.
  • T. Muhammad, A. Alsaedi, T. Hayat, and S. A. Shehzad, “A revised model for Darcy-Forchheimer three-dimensional flow of nanofluid subject to convective boundary condition,” Res. Phys., vol. 7, pp. 2791–2797, 2017. DOI: 10.1016/j.rinp.2017.07.052.
  • I. Tlili, N. Shahmir, and M. Ramzan “A novel model to analyze Darcy Forchheimer nanofluid flow in a permeable medium with Entropy generation analysis,” Taylor Fr., 2020.
  • Y. X. Li et al., “Fractional simulation for Darcy-Forchheimer hybrid nanoliquid flow with partial slip over a spinning disk,” Alex. Eng. J., vol. 60, no. 5, pp. 4787–4796, 2021. DOI: 10.1016/j.aej.2021.03.062.
  • A. Saeed et al., “Hybrid nanofluid flow through a spinning Darcy–Forchheimer porous space with thermal radiation,” Sci. Rep., vol. 11, no. 1, pp. 16708, 2021. DOI: 10.1038/s41598-021-95989-2.
  • A. K. Alzahrani, M. Z. Ullah, A. S. Alshomrani, and T. Gul, “Hybrid nanofluid flow in a Darcy-Forchheimer permeable medium over a flat plate due to solar radiation,” Case Stud. Therm. Eng., vol. 26, pp. 100955, 2021. DOI: 10.1016/j.csite.2021.
  • T. Hayat, S. Qayyum, A. Alsaedi, and B. Ahmad, “Entropy generation minimization: Darcy-Forchheimer nanofluid flow due to curved stretching sheet with partial slip,” Int. Commun. Heat Mass Transf., vol. 111, pp. 104445, 2020. DOI: 10.1016/j.icheatmasstransfer.2019.104445.
  • M. Waqas, S. Naz, T. Hayat, and A. Alsaedi, “Numerical simulation for activation energy impact in Darcy–Forchheimer nanofluid flow by impermeable cylinder with thermal radiation,” Appl. Nanosci., vol. 9, no. 5, pp. 1173–1182, 2019. DOI: 10.1007/s13204-018-00940-z.
  • A. Shafiq, G. Rasool, and C. M. Khalique, “Significance of thermal slip and convective boundary conditions in three dimensional rotating Darcy-Forchheimer nanofluid flow,” Symmetry (Basel), vol. 12, no. 5, pp. 741, 2020. DOI: 10.3390/sym12050741.
  • M. Bilal et al., “The parametric computation of nonlinear convection magnetohydrodynamic nanofluid flow with internal heating across a fixed and spinning disk,” Waves Random Complex Media, pp. 1–16, 2022. DOI: 10.1080/17455030.2022.2042621.
  • Z. Raizah, A. Saeed, M. Bilal, A. M. Galal, and E. Bonyah, “Parametric simulation of stagnation point flow of motile microorganism hybrid nanofluid across a circular cylinder with sinusoidal radius,” Open Phys., vol. 21, no. 1, pp. 20220205, 2023. DOI: 10.1515/phys-2022-0205.
  • A. M. Alqahtani et al., “Heat and mass transfer through MHD Darcy Forchheimer Casson hybrid nanofluid flow across an exponential stretching sheet,” ZAMM‐J. Appl. Math. Mechanics/Zeitschrift Für Angewandte Mathematik Und Mechanik, pp. e202200213, 2023.
  • G. Rasool et al., “Entropy generation and consequences of MHD in Darcy-Forchheimer nanofluid flow bounded by non-linearly stretching surface,” Symmetry (Basel), vol. 12, no. 4, pp. 652, 2020. DOI: 10.3390/sym12040652.
  • I. Tlili et al., “A novel model to analyze Darcy Forchheimer nanofluid flow in a permeable medium with Entropy generation analysis,” J. Taibah Univ. Sci., vol. 14, no. 1, pp. 916–930, Jan. 2020. DOI: 10.1080/16583655.2020.1790171.
  • M. Bilal et al., “Comparative numerical analysis of Maxwell’s time-dependent thermo-diffusive flow through a stretching cylinder,” Case Stud. Therm. Eng., vol. 27, pp. 101301, 2021. DOI: 10.1016/j.csite.2021.101301.
  • T. Gul et al., “Viscous dissipated hybrid nanoliquid flow with Darcy–Forchheimer and forced convection over a moving thin needle,” AIP Adv., vol. 10, no. 10, pp. 105308, 2020. DOI: 10.1063/5.0022210.
  • E. A. Algehyne et al., “Numerical simulation of bioconvective Darcy Forchhemier nanofluid flow with energy transition over a permeable vertical plate,” Sci. Rep., vol. 12, no. 1, pp. 3228, 2022. DOI: 10.1038/s41598-022-07254-9.
  • O. D. Makinde and I. L. Animasaun, “Thermophoresis and Brownian motion effects on MHD bioconvection of nanofluid with nonlinear thermal radiation and quartic chemical reaction past an upper horizontal surface of a paraboloid of revolution,” J. Mol. Liq., vol. 221, pp. 733–743, 2016. DOI: 10.1016/j.molliq.2016.06.047.
  • M. M. Bhatti, S. R. Mishra, T. Abbas, and M. M. Rashidi, “A mathematical model of MHD nanofluid flow having gyrotactic microorganisms with thermal radiation and chemical reaction effects,” Neural Comput. Appl., vol. 30, no. 4, pp. 1237–1249, 2018. DOI: 10.1007/s00521-016-2768-8.
  • M. Mustafa, “MHD nanofluid flow over a rotating disk with partial slip effects: Buongiorno model,” Int. J. Heat Mass Transf., vol. 108, pp. 1910–1916, 2017. DOI: 10.1016/j.ijheatmasstransfer.2017.01.064.
  • F. Ahmad, T. Gul, I. Khan, and A. Saeed, MHD Thin Film Flow of the Oldroyd-B Fluid Together with Bioconvection and Activation Energy. Elsevier, 2021.
  • G. Kotha, V. R. Kolipaula, M. Venkata Subba Rao, S. Penki, and A. J. Chamkha, “Internal heat generation on bioconvection of an MHD nanofluid flow due to gyrotactic microorganisms,” Eur. Phys. J. Plus, vol. 135, no. 7, 2020. DOI: 10.1140/epjp/s13360-020-00606-2.
  • M. Mustafa, J. A. Khan, T. Hayat, and A. Alsaedi, “Buoyancy effects on the MHD nanofluid flow past a vertical surface with chemical reaction and activation energy,” Int. J. Heat Mass Transf., vol. 108, pp. 1340–1346, 2017. DOI: 10.1016/j.ijheatmasstransfer.2017.01.029.
  • M. Sheikholeslami, S. Abelman, and D. D. Ganji, “Numerical simulation of MHD nanofluid flow and heat transfer considering viscous dissipation,” Int. J. Heat Mass Transf., vol. 79, pp. 212–222, 2014. DOI: 10.1016/j.ijheatmasstransfer.2014.08.004.
  • M. Hatami, M. Sheikholeslami, M. Hosseini, and D. D. Ganji, “Analytical investigation of MHD nanofluid flow in non-parallel walls,” J. Mol. Liq., vol. 194, pp. 251–259, 2014. DOI: 10.1016/j.molliq.2014.03.002.
  • A. Dawar, S. Islam, Z. Shah, and S. R. Mahmuod, “A passive control of Casson hybrid nanofluid flow over a curved surface with alumina and copper nanomaterials: A study on sodium alginate-based fluid,” J. Mol. Liq., vol. 382, pp. 122018, 2023. DOI: 10.1016/j.molliq.2023.122018.
  • A. Dawar, A. Wakif, T. Thumma, and N. A. Shah, “Towards a new MHD non-homogeneous convective nanofluid flow model for simulating a rotating inclined thin layer of sodium alginate-based Iron oxide exposed to incident solar energy,” Int. Commun. Heat Mass Transf., vol. 130, pp. 105800, 2022. DOI: 10.1016/j.icheatmasstransfer.2021.105800.
  • A. Raza, A. M. Abed, M. Y. Almusawa, L. F. Seddek, and A. H. Ali, “Prabhakar fractional simulation for inspection of CMC-based nanofluid flowing through a poured vertical channel,” Case Stud. Therm. Eng., vol. 45, pp. 102911, 2023. DOI: 10.1016/j.csite.2023.102911.
  • K. Zheng et al., “New fractional approach for the simulation of (Ag) and (TiO2) mixed hybrid nanofluid flowing through a channel: Fractal fractional derivative,” Case Stud. Therm. Eng., vol. 45, pp. 102948, 2023. DOI: 10.1016/j.csite.2023.102948.
  • D. Kushawaha, S. Yadav, and D. K. Singh, “Magnetic field effect on double-diffusion with magnetic and non-magnetic nanofluids,” Int. J. Mech. Sci., vol. 191, pp. 106085, 2021. DOI: 10.1016/j.ijmecsci.2020.106085.
  • D. Kushawaha, S. Yadav, and D. K. Singh, “Effect of non-uniform diameter and fractal dimension of Al2O3 nanoparticle on double-diffusion in tilted enclosure,” Chaos Solitons Fractals, vol. 143, pp. 110607, 2021. DOI: 10.1016/j.chaos.2020.110607.
  • M. Santhi, K. V. Suryanarayana Rao, P. Sreedevi, and P. Sudarsana Reddy, “Maxwell nanofluid heat and mass transfer analysis over a stretching sheet,” Heat Transf., vol. 51, no. 4, pp. 2905–2931, Jun. 2022. DOI: 10.1002/htj.22429.
  • B. C. Prasannakumara, “Numerical simulation of heat transport in Maxwell nanofluid flow over a stretching sheet considering magnetic dipole effect,” Partial Differ. Equ. Appl. Math., vol. 4, pp. 100064, Dec. 2021. DOI: 10.1016/j.padiff.2021.100064.
  • R. Biswas et al., “Computational treatment of MHD Maxwell nanofluid flow across a stretching sheet considering higher-order chemical reaction and thermal radiation,” J. Comput. Math. Data Sci., vol. 4, pp. 100048, Aug. 2022. DOI: 10.1016/j.jcmds.2022.100048.
  • T. Hayat, A. Aziz, T. Muhammad, and A. Alsaedi, “Active and passive controls of Jeffrey nanofluid flow over a nonlinear stretching surface,” Res. Phys., vol. 7, pp. 4071–4078, Jan. 2017. DOI: 10.1016/j.rinp.2017.10.028.
  • A. Dawar, Z. Shah, S. Islam, W. Khan, and M. Idrees, “An optimal analysis for Darcy–Forchheimer three-dimensional Williamson nanofluid flow over a stretching surface with convective conditions,” Adv. Mech. Eng., vol. 11, no. 3, Mar. 2019. DOI: 10.1177/1687814019833510.
  • A. Khan et al., “Darcy–Forchheimer flow of micropolar nanofluid between two plates in the rotating frame with non-uniform heat generation/absorption,” Adv. Mech. Eng., vol. 10, no. 10, Oct. 2018. DOI: 10.1177/1687814018808850.
  • S. K. Rawat, S. Negi, H. Upreti, and M. Kumar, “A non-Fourier’s and non-Fick’s approach to study MHD mixed convective copper water nanofluid flow over flat plate subjected to convective heating and zero wall mass flux condition,” Int. J. Appl. Comput. Math., vol. 7, no. 6, Dec. 2021. DOI: 10.1007/s40819-021-01190-4.
  • S. K. Rawat, H. Upreti, and M. Kumar, “Numerical study of activation energy and thermal radiation effects on Oldroyd-B nanofluid flow using the Cattaneo–Christov double diffusion model over a convectively heated stretching sheet,” Heat Transf., vol. 50, no. 6, pp. 5304–5331, Sept. 2021. DOI: 10.1002/htj.22125.
  • M. E. Sayed-Ahmed, H. A. Attia, and K. M. Ewis, “Time dependent pressure gradient effect on unsteady MHD Couette flow and heat transfer of a Casson fluid,” Engineering, vol. 03, no. 01, pp. 38–49, 2011. DOI: 10.4236/eng.2011.31005.
  • M. Mustafa, T. Hayat, I. Pop, and A. Hendi, “Stagnation-point flow and heat transfer of a Casson fluid towards a stretching sheet,” Zeitschrift Fur Naturforsch. - Sect. A J. Phys. Sci., vol. 67, no. 12, pp. 70–76, 2012. DOI: 10.5560/zna.2011-0057.
  • T. Hayat, A. Aziz, and T. Muhammad, On Magnetohydrodynamic Flow of Second Grade Nanofluid Over a Nonlinear Stretching Sheet. Elsevier, 2016.
  • N. A. Halim, S. Sivasankaran, and N. F. M. Noor, “Active and passive controls of the Williamson stagnation nanofluid flow over a stretching/shrinking surface,” Neural Comput. Appl., vol. 28, no. S1, pp. 1023–1033, Dec. 2017. DOI: 10.1007/S00521-016-2380-Y/TABLES/6.
  • K. Revanna Lalitha, Y. Veeranna, G. Thimmappa Sreenivasa, and D. Ashok Reddy, “Active and passive control of nanoparticles in ferromagnetic Jeffrey fluid flow,” Heat Transf., vol. 51, no. 1, pp. 998–1018, Jan. 2022. DOI: 10.1002/htj.22339.
  • T. Hayat et al., “On magnetohydrodynamic three-dimensional flow of nanofluid over a convectively heated nonlinear stretching surface,” Int. J. Heat Mass Transf., vol. 100, pp. 566–572, 2016. DOI: 10.1016/j.ijheatmasstransfer.2016.04.113.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.