Publication Cover
Numerical Heat Transfer, Part B: Fundamentals
An International Journal of Computation and Methodology
Volume 85, 2024 - Issue 6
74
Views
4
CrossRef citations to date
0
Altmetric
Articles

Effect of variable gravity on thermal convection in Jeffrey nanofluid: Darcy-Brinkman model

, & ORCID Icon
Pages 776-790 | Received 14 Apr 2023, Accepted 30 Aug 2023, Published online: 12 Sep 2023

References

  • S. Chandrasekhar, Hydrodynamic and Hydromagnetic Stability. New York, NY, USA: Oxford University Press, 1961.
  • P. Ranganathan and R. Viskanta, “Mixed convection boundary-layer flow along a vertical surface in a porous medium,” Numer. Heat Transf., vol. 7, no. 3, pp. 305–317, 1984. DOI: 10.1080/01495728408961827.
  • D. Poulikakos, “Thermal instability in a horizontal fluid layer superposed on a heat-generating porous bed,” Numer. Heat Transf., vol. 12, no. 1, pp. 83–99, 1987. DOI: 10.1080/10407788708913575.
  • H. D. Nguyen, S. Paik, and R. W. Douglass, “Study of double-diffusive convection in layered anisotropic porous media,” Numer. Heat Transf. Part B Fundam., vol. 26, no. 4, pp. 489–505, 1994. DOI: 10.1080/10407799408914942.
  • D. B. Ingham and I. Pop, Transport Phenomena in Porous Media III. Oxford, UK: Elsevier Science, 2005.
  • D. A. Nield and A. Bejan, Convection in Porous Media. New York, NY, USA: Springer and Business Media, 2006.
  • D. Nield and A. Kuznetsov, “Onset of convection with internal heating in a porous medium saturated by a nanofluid,” Transp. Porous Med., vol. 99, no. 1, pp. 73–83, 2013. DOI: 10.1007/s11242-013-0174-6.
  • D. A. Nield and C. T. Simmons, “A brief introduction to convection in porous media,” Transp. Porous Med., vol. 130, no. 1, pp. 237–250, 2019. DOI: 10.1007/s11242-018-1163-6.
  • S. U. Choi and J. A. Eastman, Enhancing Thermal Conductivity of Fluids with Nanoparticles. San Francisco, USA: ASME Int. Mech. Eng. Cong. & Expos., 1995.
  • S. A. A. Shah et al., “Significance of bio-convection, MHD, thermal radiation and activation energy across Prandtl nanofluid flow: a case of stretching cylinder,” Int. Comm. Heat Mass Transf., vol. 137, pp. 106299, 2022. DOI: 10.1016/j.icheatmasstransfer.2022.106299.
  • S. A. A. Shah and A. U. Awan, “Significance of magnetized Darcy-Forchheimer stratified rotating Williamson hybrid nanofluid flow: a case of 3D sheet,” Int. Comm. Heat Mass Transf., vol. 136, pp. 106214, 2022. DOI: 10.1016/j.icheatmasstransfer.2022.106214.
  • S. A. A. Shah et al., “Bio-convection effects on Prandtl hybrid nanofluid flow with chemical reaction and motile microorganism over a stretching sheet,” Nanomaterials, vol. 12, no. 13, pp. 2174, 2022. DOI: 10.3390/nano12132174.
  • A. U. Awan, S. A. A. Shah, and B. Ali, “Bio-convection effects on Williamson nanofluid flow with exponential heat source and motile microorganism over a stretching sheet,” Chin. J. Phys., vol. 77, pp. 2795–2810, 2022. DOI: 10.1016/j.cjph.2022.04.002.
  • A. U. Awan et al., “Significance of magnetic field and Darcy–Forchheimer law on dynamics of Casson-Sutterby nanofluid subject to a stretching circular cylinder,” Int. Comm. Heat Mass Transf., vol. 139, pp. 106399, 2022. DOI: 10.1016/j.icheatmasstransfer.2022.106399.
  • A. U. Awan, S. Majeed, B. Ali, and L. Ali, “Significance of nanoparticles aggregation and Coriolis force on the dynamics of Prandtl nanofluid: the case of rotating flow,” Chin. J. Phys., vol. 79, pp. 264–274, 2022. DOI: 10.1016/j.cjph.2022.07.008.
  • B. Ali et al., “Dynamics of rotating micropolar fluid over a stretch surface: the case of linear and quadratic convection significance in thermal management,” Nanomaterials, vol. 12, no. 18, pp. 3100, 2022. DOI: 10.3390/nano12183100.
  • B. Ali et al., “The dynamics of water-based nanofluid subject to the nanoparticle’s radius with a significant magnetic field: the case of rotating micropolar fluid,” Sustainability, vol. 14, no. 17, pp. 10474, 2022. DOI: 10.3390/su141710474.
  • A. A. Akbar et al., “Insight into the role of nanoparticles shape factors and diameter on the dynamics of rotating water-based fluid,” Nanomaterials, vol. 12, no. 16, pp. 2801, 2022. DOI: 10.3390/nano12162801.
  • J. Buongiorno, “Convective transport in nanofluids,” Trans. ASME, vol. 128, no. 3, pp. 240–250, 2006. DOI: 10.1115/1.2150834.
  • D. Tzou, “Instability of nanofluids in natural convection,” J. Heat Transf., vol. 130, no. 7, pp. 072401, 2008. DOI: 10.1115/1.2908427.
  • D. Y. Tzou, “Thermal instability of nanofluids in natural convection,” Int. J. Heat Mass Transf., vol. 51, no. 11-12, pp. 2967–2979, 2008. DOI: 10.1016/j.ijheatmasstransfer.2007.09.014.
  • D. Nield and A. V. Kuznetsov, “Thermal instability in a porous medium layer saturated by a nanofluid,” Int. J. Heat Mass Transf., vol. 52, no. 25-26, pp. 5796–5801, 2009. DOI: 10.1016/j.ijheatmasstransfer.2009.07.023.
  • D. Nield and A. V. Kuznetsov, “The onset of convection in a horizontal nanofluid layer of finite depth,” Eur. J. Mech. B/Fluids, vol. 29, no. 3, pp. 217–223, 2010. DOI: 10.1016/j.euromechflu.2010.02.003.
  • A. V. Kuznetsov and D. A. Nield, “Thermal instability in a porous medium layer saturated by a nanofluid: brinkman model,” Transp. Porous Med., vol. 81, no. 3, pp. 409–422, 2010. DOI: 10.1007/s11242-009-9413-2.
  • L. J. Sheu, “Linear stability of convection in a viscoelastic nanofluid layer,” Int. J. Mech. Mechatr. Eng., vol. 5, no. 10, pp. 1970–1976, 2011. DOI: 10.5281/zenodo.1072493.
  • L. J. Sheu, “Thermal instability in a porous medium layer saturated with a viscoelastic nanofluid,” Transp. Porous Med., vol. 88, no. 3, pp. 461–477, 2011. DOI: 10.1007/s11242-011-9749-2.
  • D. Yadav, G. Agrawal, and R. Bhargava, “Thermal instability of rotating nanofluid layer,” Int. J. Eng. Sci., vol. 49, no. 11, pp. 1171–1184, 2011. DOI: 10.1016/j.ijengsci.2011.07.002.
  • R. Chand and G. C. Rana, “Thermal instability of Rivlin-Ericksen elastico-viscous nanofluid saturated in porous medium,” J. Fluid Eng., vol. 134, no. 12, pp. 121203, 2012. DOI: 10.1115/1.4007901.
  • R. Chand and G. C. Rana, “Oscillating convection of nanofluid in porous medium,” Transp. Porous Med., vol. 95, no. 2, pp. 269–284, 2012. DOI: 10.1007/s11242-012-0042-9.
  • D. Yadav et al., “Magneto-convection in a rotating layer of nanofluid,” Asia-Pac. J. Chem. Eng., vol. 9, no. 5, pp. 663–677, 2014. DOI: 10.1002/apj.1796.
  • S. Govender, “Thermal instability in a rotating vertical porous layer saturated by a nanofluid,” J. Heat Transf., vol. 138, no. 5, pp. 052601, 2016. DOI: 10.1115/1.4032313.
  • R. Chand, D. Yadav, and G. C. Rana, “Thermal instability of couple-stress nanofluid with vertical rotation in a porous medium,” J. Por. Media, vol. 20, no. 7, pp. 635–648, 2017. DOI: 10.1615/JPorMedia.v20.i7.50.
  • R. Chand, G. C. Rana, and D. Puigjaner, “Thermal instability analysis of an elastico-viscous nanofluid layer,” Eng. Trans., vol. 66, no. 3, pp. 301–324, 2018. DOI: 10.24423/engtrans.401.20180928.
  • S. Kaothekar, “Thermal instability of partially ionized viscous plasma with hall effect FLR corrections flowing through porous medium,” J. Por. Media, vol. 21, no. 8, pp. 679–699, 2018. DOI: 10.1615/JPorMedia.2018017559.
  • K. Sreelakshmi, G. Sarojamma, J. Murthy, and V. Ramana, “Homotopy analysis of an unsteady flow heat transfer of a Jeffrey nanofluid over a radially stretching convective surface,” J. Nanofluids, vol. 7, no. 1, pp. 62–71, 2018. DOI: 10.1166/jon.2018.1432.
  • G. C. Rana, “Effects of rotation on Jeffrey nanofluid flow saturated by a porous medium,” J. Appl. Math. Comput. Mech., vol. 20, no. 3, pp. 17–29, 2021. DOI: 10.17512/jamcm.2021.3.02.
  • G. C. Rana and P. K. Gautam, “On the onset of thermal instability of a porous medium layer saturating a Jeffrey nanofluid,” Eng. Trans., vol. 70, no. 2, pp. 123–139, 2022. DOI: 10.24423/EngTrans.1387.20220609.
  • P. K. Bhatia and J. M. Steiner, “Thermal instability of fluid layer in hydromagnetics,” J. Math. Anal. Appl., vol. 41, no. 2, pp. 271–283, 1973. DOI: 10.1016/0022-247X(73)90201-1.
  • R. C. Sharma, “Thermal instability of viscoelastic fluid in hydromagnetics,” Acta Phys., vol. 38, no. 4, pp. 293–298, 1975. DOI: 10.1007/BF03157132.
  • G. C. Rana and V. Sharma, “Effect of rotation on the onset of convection in Rivlin-Ericksen fluid heated from below in a Brinkman porous medium,” Int. J. Fluid Mech. Res., vol. 39, no. 6, pp. 467–477, 2012. DOI: 10.1615/InterJFluidMechRes.v39.i6.10.
  • R. C. Thakur and G. C. Rana, “Effect of suspended particles on thermal convection in Rivlin-Ericksen fluid in a Darcy-Brinkman porous medium,” J. Mech. Eng. Sci., vol. 2, pp. 162–171, 2012. DOI: 10.15282/jmes.2.2012.3.0014%20.
  • G. C. Rana and R. Chand, “On the onset of thermal convection in a rotating nanofluid layer saturating a Darcy-Brinkman porous medium: a more realistic model,” J. Por. Media, vol. 18, no. 6, pp. 629–635, 2015. DOI: 10.1615/JPorMedia.v18.i6.60.
  • G. C. Rana, R. Chand, and V. Sharma, “Thermal instability of a Rivlin‐Ericksen nanofluid saturated by a Darcy‐ Brinkman porous medium: a more realistic model,” Eng. Trans., vol. 64, no. 3, pp. 271–286, 2016.
  • P. L. Sharma et al., “Electrohydrodynamics convection in dielectric rotating Oldroydian nanofluid in porous medium,” J. Nig. Soc. Phys. Sci., vol. 5, pp. 1231, 2023. DOI: 10.46481/jnsps.2023.1231.
  • P. L. Sharma, A. Kumar, and G. C. Rana Deepak, “Effect of magnetic field on thermosolutal convection in Jeffrey nanofluid with porous medium,” Spcl. Top. Rev. Por. Media, vol. 14, no. 3, pp. 17–29, 2023. DOI: 10.1615/SpecialTopicsRevPorousMedia.2023046929.
  • J. Kaur, U. Gupta, and R. P. Sharma, “Nonlinear stability analysis for the rheology of Oldroyd-B nanofluids embedded by Darcy–Brinkman porous media using a two-phase model,” Proc. Inst. Mech. Eng. Part E J. Proc. Mech. Eng., pp. 095440892211416, 2022. DOI: 10.1177/09544089221141600.
  • J. Kaur and U. Gupta, “Nonlinear analysis for thermal convection in Oldroyd-B nanofluids with zero nanoparticle flux on the boundaries,” Indian J. Phys., vol. 97, no. 3, pp. 845–853, 2023. DOI: 10.1007/s12648-022-02422-z.
  • J. Kaur, U. Gupta, and R. P. Sharma, “Unsteady finite amplitude magneto-convection of Oldroyd-B nanofluids with internal heat source,” J. Nanofluids, vol. 12, no. 1, pp. 78–90, 2023. DOI: 10.1166/jon.2023.1912.
  • M. Devi and U. Gupta, “On blood-based binary Casson nanofluid convection using viscosity and conductivity variations embedded with Darcy porous medium,” Indian J. Phys., vol. 97, no. 6, pp. 1833–1847, 2023. DOI: 10.1007/s12648-022-02584-w.
  • M. Devi and U. Gupta, “Magneto-convection in Casson nanofluids with three different boundaries,” J. Nanofluids, vol. 12, no. 5, pp. 1351–1359, 2023. DOI: 10.1166/jon.2023.2024.
  • G. Pradhan, P. Samal, and U. Tripathy, “Thermal stability of a fluid layer in a variable gravitational field,” Indian J. Pure Appl. Math., vol. 20, no. 7, pp. 736–745, 1989.
  • S. M. Alex, P. R. Patil, and K. Venkatakrishnan, “Variable gravity effects on thermal instability in a porous medium with internal heat source and inclined temperature gradient,” Fluid Dyn. Res., vol. 29, no. 1, pp. 1–6, 2001. DOI: 10.1016/S0169-5983(01)00016-8.
  • R. Chand, G. C. Rana, and S. K. Kango, “Effect of variable gravity on thermal instability of rotating nanofluid in porous medium,” FME Trans., vol. 43, no. 1, pp. 62–69, 2015. DOI: 10.5937/fmet1501062c.
  • R. Chand, G. C. Rana, and S. Kumar, “Variable gravity effects on thermal instability of nanofluid in anisotropic porous medium,” Int. J. Appl. Mech. Eng., vol. 18, no. 3, pp. 631–642, 2013. DOI: 10.2478/ijame-2013-0038.
  • A. Mahajan and V. K. Tripathi, “Effects of spatially varying gravity, temperature and concentration fields on the stability of a chemically reacting fluid layer,” J. Eng. Math., vol. 125, no. 1, pp. 23–45, 2020. DOI: 10.1007/s10665-020-10068-1.
  • S. Shekhar, R. Ragoju, and D. Yadav, “The effect of variable gravity on rotating Rayleigh– Bénard convection in a sparsely packed porous layer,” Heat Trans., vol. 51, no. 5, pp. 4187–4204, 2022. DOI: 10.1002/htj.22495.
  • D. Surya and A. Gupta, “Thermal instability in a liquid layer with permeable boundaries under the influence of variable gravity,” Eur. J. Mech. B Fluids, vol. 91, pp. 219–225, 2022. DOI: 10.1016/j.euromechflu.2021.10.010.
  • D. Yadav, “Numerical investigation of the combined impact of variable gravity field and throughflow on the onset of convective motion in a porous medium layer,” Int. Comm. Heat Transf., vol. 108, pp. 104274, 2019. DOI: 10.1016/j.icheatmasstransfer.2019.104274.
  • P. L. Sharma Deepak, “Thermal instability of Jeffrey nanofluid in porous media with variable gravity,” ICMSAS, vol. 1, pp. 76–87, 2023.
  • P. L. Sharma, D. Bains, and P. Thakur, “Thermal instability of rotating Jeffrey nanofluids in porous media with variable gravity,” J. Nig. Soc. Phys. Sci., vol. 5, no. 2, pp. 1366, 2023. DOI: 10.46481/jnsps.2023.1366.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.