301
Views
1
CrossRef citations to date
0
Altmetric
Reviews

MicroRNA sensing and regulating microbiota-host crosstalk via diet motivation

, , , , , , , & show all

References

  • Ahonen, M. A., P. Haridas, R. Mysore, M. Wabitsch, P. Fischer-Posovszky, and V. M. Olkkonen. 2019. miR-107 inhibits CDK6 expression, differentiation, and lipid storage in human adipocytes. Molecular and Cellular Endocrinology 479:110–6. doi: 10.1016/j.mce.2018.09.007.
  • Alsaweed, M., P. E. Hartmann, D. T. Geddes, and F. Kakulas. 2015. MicroRNAs in breastmilk and the lactating breast: Potential immunoprotectors and developmental regulators for the infant and the mother. International Journal of Environmental Research and Public Health 12 (11):13981–4020. doi: 10.3390/ijerph121113981.
  • Ambros, V. 2001. MicroRNAs: Tiny regulators with great potential. Cell 107 (7):823–6. doi: 10.1016/S0092-8674(01)00616-X.
  • Anbazhagan, A. N., S. Priyamvada, A. Borthakur, S. Saksena, R. K. Gill, W. A. Alrefai, and P. K. Dudeja. 2019. miR-125a-5p: A novel regulator of SLC26A6 expression in intestinal epithelial cells. American Journal of Physiology. Cell Physiology 317 (2):C200–C208. doi: 10.1152/ajpcell.00068.2019.
  • Anbazhagan, A. N., S. Priyamvada, A. Kumar, D. Jayawardena, A. Borthakur, S. Saksena, R. K. Gill, W. A. Alrefai, and P. K. Dudeja. 2021. miR-29a, b, and c regulate SLC5A8 expression in intestinal epithelial cells. American Journal of Physiology-Gastrointestinal and Liver Physiology 321 (2):G223–G231. doi: 10.1152/ajpgi.00148.2021.
  • Anbazhagan, A. N., S. Priyamvada, A. Kumar, D. B. Maher, A. Borthakur, W. A. Alrefai, J. Malakooti, J. H. Kwon, and P. K. Dudeja. 2014. Translational repression of SLC26A3 by miR-494 in intestinal epithelial cells. American Journal of Physiology. Gastrointestinal and Liver Physiology 306 (2):G123–G131. doi: 10.1152/ajpgi.00222.2013.
  • Assmann, T. S., A. Cuevas-Sierra, J. I. Riezu-Boj, F. I. Milagro, and J. A. Martínez. 2020. Comprehensive analysis reveals novel interactions between circulating microRNAs and gut microbiota composition in human obesity. International Journal of Molecular Sciences 21 (24):9509. doi: 10.3390/ijms21249509.
  • Avalos, B., D. A. Argueta, P. A. Perez, M. Wiley, C. Wood, and N. V. DiPatrizio. 2020. Cannabinoid CB1 receptors in the intestinal epithelium are required for acute western-diet preferences in mice. Nutrients 12 (9):2874. doi: 10.3390/nu12092874.
  • Bazzoni, G, and E. Dejana. 2004. Endothelial cell-to-cell junctions: Molecular organization and role in vascular homeostasis. Physiological Reviews 84 (3):869–901. doi: 10.1152/physrev.00035.2003.
  • Behrouzi, A., F. Ashrafian, H. Mazaheri, A. Lari, M. Nouri, F. Riazi Rad, Z. Hoseini Tavassol, and S. D. Siadat. 2020. The importance of interaction between MicroRNAs and gut microbiota in several pathways. Microbial Pathogenesis 144:104200. doi: 10.1016/j.micpath.2020.104200.
  • Bonder, M. J., A. Kurilshikov, E. F. Tigchelaar, Z. Mujagic, F. Imhann, A. V. Vila, P. Deelen, T. Vatanen, M. Schirmer, S. P. Smeekens, et al. 2016. The effect of host genetics on the gut microbiome. Nature Genetics 48 (11):1407–12. doi: 10.1038/ng.3663.
  • Boulund, U., D. M. Bastos, B. Ferwerda, B. J. van den Born, S. J. Pinto-Sietsma, H. Galenkamp, E. Levin, A. K. Groen, A. H. Zwinderman, M, and Nieuwdorp, V. 2022. Gut microbiome associations with host genotype vary across ethnicities and potentially influence cardiometabolic traits. Cell Host & Microbe 30 (10):1464–80.e6. doi: 10.1016/j.chom.2022.08.013.
  • Briand, O., V. Touche, S. Colin, G. Brufau, A. Davalos, M. Schonewille, F. Bovenga, V. Carrière, J. F. de Boer, C. Dugardin, et al. 2016. Liver X receptor regulates triglyceride absorption through intestinal down-regulation of scavenger receptor class B, type 1. Gastroenterology 150 (3):650–8. doi: 10.1053/j.gastro.2015.11.015.
  • Brown, E. M., X. Ke, D. Hitchcock, S. Jeanfavre, J. Avila-Pacheco, T. Nakata, T. D. Arthur, N. Fornelos, C. Heim, E. A. Franzosa, et al. 2019. Bacteroides-derived sphingolipids are critical for maintaining intestinal homeostasis and symbiosis. Cell Host & Microbe 25 (5):668–80.e7. doi: 10.1016/j.chom.2019.04.002.
  • Cao, Y., Z. Wang, Y. Yan, L. Ji, J. He, B. Xuan, C. Shen, Y. Ma, S. Jiang, D. Ma, et al. 2021. Enterotoxigenic Bacteroides fragilis promotes intestinal inflammation and malignancy by inhibiting exosome-packaged miR-149-3p. Gastroenterology 161 (5):1552–66.e12. doi: 10.1053/j.gastro.2021.08.003.
  • Canfora, E. E., J. W. Jocken, and E. E. Blaak. 2015. Short-chain fatty acids in control of body weight and insulin sensitivity. Nature Reviews. Endocrinology 11 (10):577–91.
  • Cech, T. R, and J. A. Steitz. 2014. The noncoding RNA revolution-trashing old rules to forge new ones. Cell 157 (1):77–94. doi: 10.1016/j.cell.2014.03.008.
  • Chaurasia, B., T. S. Tippetts, R. Mayoral Monibas, J. Liu, Y. Li, L. Wang, J. L. Wilkerson, C. R. Sweeney, R. F. Pereira, D. H. Sumida, et al. 2019. Targeting a ceramide double bond improves insulin resistance and hepatic steatosis. Science (New York, N.Y.) 365 (6451):386–92. doi: 10.1126/science.aav3722.
  • Chen, L., D. Wang, S. Garmaeva, A. Kurilshikov, A. Vich Vila, R. Gacesa, T. Sinha, E. Segal, R. K. Weersma, C. Wijmenga, et al. 2021. The long-term genetic stability and individual specificity of the human gut microbiome. Cell 184 (9):2302–15.e12. doi: 10.1016/j.cell.2021.03.024.
  • Chen, Q., M. Yan, Z. Cao, X. Li, Y. Zhang, J. Shi, G. H. Feng, H. Peng, X. Zhang, Y. Zhang, et al. 2016. Sperm tsRNAs contribute to intergenerational inheritance of an acquired metabolic disorder. Science (New York, N.Y.) 351 (6271):397–400. doi: 10.1126/science.aad7977.
  • Chen, T., H. Xue, R. Lin, and Z. Huang. 2017a. MiR-34c and PlncRNA1 mediated the function of intestinal epithelial barrier by regulating tight junction proteins in inflammatory bowel disease. Biochemical and Biophysical Research Communications 486 (1):6–13. doi: 10.1016/j.bbrc.2017.01.115.
  • Chen, T., H. Xue, R. Lin, and Z. Huang. 2017b. MiR-126 impairs the intestinal barrier function via inhibiting S1PR2 mediated activation of PI3K/AKT signaling pathway. Biochemical and Biophysical Research Communications 494 (3-4):427–32. doi: 10.1016/j.bbrc.2017.03.043.
  • Chen, Y., F. Siegel, S. Kipschull, B. Haas, H. Fröhlich, G. Meister, and A. Pfeifer. 2013. miR-155 regulates differentiation of brown and beige adipocytes via a bistable circuit. Nature Communications 4:1769. doi: 10.1038/ncomms2742.
  • Christ, A., M. Lauterbach, and E. Latz. 2019. Western diet and the immune system: An inflammatory connection. Immunity 51 (5):794–811. doi: 10.1016/j.immuni.2019.09.020.
  • Chung, P. H., Y. Y. Wu, P. H. Chen, C. P. Fung, C. M. Hsu, and L. W. Chen. 2016. Lactobacillus salivarius reverse diabetes-induced intestinal defense impairment in mice through non-defensin protein. The Journal of Nutritional Biochemistry 35:48–57. doi: 10.1016/j.jnutbio.2016.05.013.
  • Corella, D., G. Peloso, D. K. Arnett, S. Demissie, L. A. Cupples, K. Tucker, C. Q. Lai, L. D. Parnell, O. Coltell, Y. C. Lee, et al. 2009. APOA2, dietary fat, and body mass index: Replication of a gene-diet interaction in 3 independent populations. Archives of Internal Medicine 169 (20):1897–906. doi: 10.1001/archinternmed.2009.343.
  • Dai, X., X. Chen, Q. Chen, L. Shi, H. Liang, Z. Zhou, Q. Liu, W. Pang, D. Hou, C. Wang, et al. 2015. MicroRNA-193a-3p reduces intestinal inflammation in response to microbiota via down-regulation of colonic PepT1. The Journal of Biological Chemistry 290 (26):16099–115. doi: 10.1074/jbc.M115.659318.
  • Dalmasso, G., A. Cougnoux, J. Delmas, A. Darfeuille-Michaud, and R. Bonnet. 2014. The bacterial genotoxin colibactin promotes colon tumor growth by modifying the tumor microenvironment. Gut Microbes 5 (5):675–80. doi: 10.4161/19490976.2014.969989.
  • Dalmasso, G., H. T. Nguyen, Y. Yan, H. Laroui, M. A. Charania, S. Ayyadurai, S. V. Sitaraman, and D. Merlin. 2011a. Microbiota modulate host gene expression via microRNAs. PloS One 6 (4):e19293. doi: 10.1371/journal.pone.0019293.
  • Dalmasso, G., H. T. Nguyen, Y. Yan, H. Laroui, M. A. Charania, T. S. Obertone, S. V. Sitaraman, and D. Merlin. 2011b. MicroRNA-92b regulates expression of the oligopeptide transporter PepT1 in intestinal epithelial cells. American Journal of Physiology. Gastrointestinal and Liver Physiology 300 (1):G52–G59. doi: 10.1152/ajpgi.00394.2010.
  • D’Aquila, P., L. Lynn Carelli, F. De Rango, G. Passarino, and D. Bellizzi. 2020. Gut microbiota as important mediator between diet and DNA methylation and histone modifications in the host. Nutrients 12 (3):597. doi: 10.3390/nu12030597.
  • De Filippis, F., N. Pellegrini, L. Vannini, I. B. Jeffery, A. La Storia, L. Laghi, D. I. Serrazanetti, R. Di Cagno, I. Ferrocino, C. Lazzi, et al. 2016. High-level adherence to a Mediterranean diet beneficially impacts the gut microbiota and associated metabolome. Gut 65 (11):1812–21. doi: 10.1136/gutjnl-2015-309957.
  • De Robertis, M., A. Sarra, V. D’Oria, F. Mura, F. Bordi, P. Postorino, and D. Fratantonio. 2020. Blueberry-derived exosome-like nanoparticles counter the response to TNF-α-induced change on gene expression in EA.hy926 cells. Biomolecules 10 (5):742. doi: 10.3390/biom10050742.
  • De Wouters d‘Oplinter, A., M. Rastelli, M. Van Hul, N. M. Delzenne, P. D. Cani, and A. Everard. 2021. Gut microbes participate in food preference alterations during obesity. Gut Microbes 13 (1):1959242. doi: 10.1080/19490976.2021.1959242.
  • Del Pozo-Acebo, L., M. C. López de Las Hazas, A. Margollés, A. Dávalos, and A. García-Ruiz. 2021. Eating microRNAs: Pharmacological opportunities for cross-kingdom regulation and implications in host gene and gut microbiota modulation. British Journal of Pharmacology 178 (11):2218–45. doi: 10.1111/bph.15421.
  • Depommier, C., A. Everard, C. Druart, H. Plovier, M. Van Hul, S. Vieira-Silva, G. Falony, J. Raes, D. Maiter, N. M. Delzenne, et al. 2019. Supplementation with Akkermansia muciniphila in overweight and obese human volunteers: A proof-of-concept exploratory study. Nature Medicine 25 (7):1096–103. doi: 10.1038/s41591-019-0495-2.
  • Díaz-Garrido, N., J. Badia, and L. Baldomà. 2021. Microbiota-derived extracellular vesicles in interkingdom communication in the gut. Journal of Extracellular Vesicles 10 (13):e12161. doi: 10.1002/jev2.12161.
  • Dietrich, S., S. Jacobs, J. S. Zheng, K. Meidtner, L. Schwingshackl, and M. B. Schulze. 2019. Gene-lifestyle interaction on risk of type 2 diabetes: A systematic review. Obesity Reviews: An Official Journal of the International Association for the Study of Obesity 20 (11):1557–71. doi: 10.1111/obr.12921.
  • Díez-Sainz, E., S. Lorente-Cebrián, P. Aranaz, J. I. Riezu-Boj, J. A. Martínez, and F. I. Milagro. 2021. Potential mechanisms linking food-derived microRNAs, gut microbiota and intestinal barrier functions in the context of nutrition and human health. Frontiers in Nutrition 8:586564.
  • Din, A. U., A. Hassan, Y. Zhu, K. Zhang, Y. Wang, T. Li, Y. Wang, and G. Wang. 2020. Inhibitory effect of Bifidobacterium bifidum ATCC 29521 on colitis and its mechanism. The Journal of Nutritional Biochemistry 79:108353. doi: 10.1016/j.jnutbio.2020.108353.
  • Ding, L., Q. Yang, E. Zhang, Y. Wang, S. Sun, Y. Yang, T. Tian, Z. Ju, L. Jiang, X. Wang, et al. 2021. Notoginsenoside Ft1 acts as a TGR5 agonist but FXR antagonist to alleviate high fat diet-induced obesity and insulin resistance in mice. Acta Pharmaceutica Sinica. B 11 (6):1541–54. doi: 10.1016/j.apsb.2021.03.038.
  • Du, C. T., W. Gao, K. Ma, S. X. Yu, N. Li, S. Q. Yan, F. H. Zhou, Z. Z. Liu, W. Chen, L. C. Lei, et al. 2018. MicroRNA-146a deficiency protects against listeria monocytogenes infection by modulating the gut microbiota. International Journal of Molecular Sciences 19 (4):993. doi: 10.3390/ijms19040993.
  • Du, J., P. Zhang, J. Luo, L. Shen, S. Zhang, H. Gu, J. He, L. Wang, X. Zhao, M. Gan, et al. 2021. Dietary betaine prevents obesity through gut microbiota-drived microRNA-378a family. Gut Microbes 13 (1):1–19. doi: 10.1080/19490976.2020.1862612.
  • Esau, C., X. Kang, E. Peralta, E. Hanson, E. G. Marcusson, L. V. Ravichandran, Y. Sun, S. Koo, R. J. Perera, R. Jain, et al. 2004. MicroRNA-143 regulates adipocyte differentiation. The Journal of Biological Chemistry 279 (50):52361–5. doi: 10.1074/jbc.C400438200.
  • Everard, A., C. Belzer, L. Geurts, J. P. Ouwerkerk, C. Druart, L. B. Bindels, Y. Guiot, M. Derrien, G. G. Muccioli, N. M. Delzenne, et al. 2013. Cross-talk between Akkermansia muciniphila and intestinal epithelium controls diet-induced obesity. Proceedings of the National Academy of Sciences of the United States of America 110 (22):9066–71. doi: 10.1073/pnas.1219451110.
  • Feil, R, and M. F. Fraga. 2012. Epigenetics and the environment: Emerging patterns and implications. Nature Reviews. Genetics 13 (2):97–109.
  • Fernández-García, V., S. González-Ramos, P. Martín-Sanz, F. García-Del Portillo, J. M. Laparra, and L. Boscá. 2021. NOD1 in the interplay between microbiota and gastrointestinal immune adaptations. Pharmacological Research 171:105775. doi: 10.1016/j.phrs.2021.105775.
  • Fisher, E., H. Boeing, A. Fritsche, F. Doering, H. G. Joost, and M. B. Schulze. 2009. Whole-grain consumption and transcription factor-7-like 2 (TCF7L2) rs7903146: Gene-diet interaction in modulating type 2 diabetes risk. The British Journal of Nutrition 101 (4):478–81. doi: 10.1017/S0007114508020369.
  • Fiorucci, S., A. Mencarelli, G. Palladino, and S. Cipriani. 2009. Bile-acid-activated receptors: Targeting TGR5 and farnesoid-X-receptor in lipid and glucose disorders. Trends in Pharmacological Sciences 30 (11):570–80. doi: 10.1016/j.tips.2009.08.001.
  • Foley, S. E., C. Tuohy, M. Dunford, M. J. Grey, H. De Luca, C. Cawley, R. L. Szabady, A. Maldonado-Contreras, J. M. Houghton, D. V. Ward, et al. 2021. Gut microbiota regulation of P-glycoprotein in the intestinal epithelium in maintenance of homeostasis. Microbiome 9 (1):183. doi: 10.1186/s40168-021-01137-3.
  • Gabanyi, I., G. Lepousez, R. Wheeler, A. Vieites-Prado, A. Nissant, S. Wagner, C. Moigneu, S. Dulauroy, S. Hicham, B. Polomack, et al. 2022. Bacterial sensing via neuronal Nod2 regulates appetite and body temperature. Science (New York, N.Y.) 376 (6590):eabj3986. doi: 10.1126/science.abj3986.
  • Gacesa, R., A. Kurilshikov, A. Vich Vila, T. Sinha, M. Klaassen, L. A. Bolte, S. Andreu-Sánchez, L. Chen, V. Collij, S. Hu, et al. 2022. Environmental factors shaping the gut microbiome in a Dutch population. Nature 604 (7907):732–9. doi: 10.1038/s41586-022-04567-7.
  • Garcia-Mantrana, I., M. Selma-Royo, C. Alcantara, and M. C. Collado. 2018. Shifts on gut microbiota associated to mediterranean diet adherence and specific dietary intakes on general adult population. Frontiers in Microbiology 9:890. doi: 10.3389/fmicb.2018.00890.
  • Gentile, C. L, and T. L. Weir. 2018. The gut microbiota at the intersection of diet and human health. Science (New York, N.Y.) 362 (6416):776–80. doi: 10.1126/science.aau5812.
  • Goedeke, L., N. Rotllan, A. Canfrán-Duque, J. F. Aranda, C. M. Ramírez, E. Araldi, C. S. Lin, N. N. Anderson, A. Wagschal, R. de Cabo, et al. 2015. MicroRNA-148a regulates LDL receptor and ABCA1 expression to control circulating lipoprotein levels. Nature Medicine 21 (11):1280–9. doi: 10.1038/nm.3949.
  • Goga, A., B. Yagabasan, K. Herrmanns, S. Godbersen, P. N. Silva, R. Denzler, M. Zünd, M. Furter, G. Schwank, S. Sunagawa, et al. 2021. miR-802 regulates Paneth cell function and enterocyte differentiation in the mouse small intestine. Nature Communications 12 (1):3339. doi: 10.1038/s41467-021-23298-3.
  • Goni, L., M. Cuervo, F. I. Milagro, and J. A. Martínez. 2015. Future perspectives of personalized weight loss interventions based on nutrigenetic, epigenetic, and metagenomic Data. The Journal of Nutrition 146 (4):905S–12S. doi: 10.3945/jn.115.218354.
  • Gonzalez, F. J., C. Jiang, and A. D. Patterson. 2016. An intestinal microbiota-farnesoid X receptor axis modulates metabolic disease. Gastroenterology 151 (5):845–59. doi: 10.1053/j.gastro.2016.08.057.
  • González-Ramos, S., M. Paz-García, V. Fernández-García, K. J. Portune, E. F. Acosta-Medina, Y. Sanz, A. Castrillo, P. Martín-Sanz, M. J. Obregon, and L. Boscá. 2020. NOD1 deficiency promotes an imbalance of thyroid hormones and microbiota homeostasis in mice fed high fat diet. Scientific Reports 10 (1):12317. doi: 10.1038/s41598-020-69295-2.
  • Goodrich, J. K., J. L. Waters, A. C. Poole, J. L. Sutter, O. Koren, R. Blekhman, M. Beaumont, W. Van Treuren, R. Knight, J. T. Bell, et al. 2014. Human genetics shape the gut microbiome. Cell 159 (4):789–99. doi: 10.1016/j.cell.2014.09.053.
  • Greenhill, C. 2015. Gut microbiota: Firmicutes and Bacteroidetes involved in insulin resistance by mediating levels of glucagon-like peptide 1. Nature Reviews. Endocrinology 11 (5):254.
  • Grieneisen, L., M. Dasari, T. J. Gould, J. R. Björk, J. C. Grenier, V. Yotova, D. Jansen, N. Gottel, J. B. Gordon, N. H. Learn, et al. 2021. Gut microbiome heritability is nearly universal but environmentally contingent. Science (New York, N.Y.) 373 (6551):181–6. doi: 10.1126/science.aba5483.
  • Guo, X., Z. Zhang, T. Zeng, Y. C. Lim, Y. Wang, X. Xie, S. Yang, C. Huang, M. Xu, L. Tao, et al. 2019. cAMP-MicroRNA-203-IFNγ network regulates subcutaneous white fat browning and glucose tolerance. Molecular Metabolism 28:36–47. doi: 10.1016/j.molmet.2019.07.002.
  • Guo, Y., X. Zhu, S. Zeng, M. He, X. Xing, and C. Wang. 2020. miRNA-10a-5p alleviates insulin resistance and maintains diurnal patterns of triglycerides and gut microbiota in high-fat diet-fed mice. Mediators of Inflammation 2020:8192187. doi: 10.1155/2020/8192187.
  • Guo, Z., X. Cai, X. Guo, Y. Xu, J. Gong, Y. Li, and W. Zhu. 2018. Let-7b ameliorates Crohn’s disease-associated adherent-invasive E coli induced intestinal inflammation via modulating Toll-Like Receptor 4 expression in intestinal epithelial cells. Biochemical Pharmacology 156:196–203. doi: 10.1016/j.bcp.2018.08.029.
  • Haines, R. J., R. S. Beard, Jr, R. A. Eitner, L. Chen, and M. H. Wu. 2016. TNFα/IFNγ mediated intestinal epithelial barrier dysfunction is attenuated by microRNA-93 downregulation of PTK6 in mouse colonic epithelial cells. PloS One 11 (4):e0154351. doi: 10.1371/journal.pone.0154351.
  • Hansson, G. C, and M. E. Johansson. 2010. The inner of the two Muc2 mucin-dependent mucus layers in colon is devoid of bacteria. Gut Microbes 1 (1):51–4. doi: 10.4161/gmic.1.1.10470.
  • Hauge, M., M. A. Vestmar, A. S. Husted, J. P. Ekberg, M. J. Wright, J. D. Salvo, A. B. Weinglass, M. S. Engelstoft, A. N. Madsen, M. Lückmann, et al. 2015. GPR40 (FFAR1) – Combined Gs and Gq signaling in vitro is associated with robust incretin secretagogue action ex vivo and in vivo. Molecular Metabolism 4 (1):3–14. doi: 10.1016/j.molmet.2014.10.002.
  • He, C., T. Yu, Y. Shi, C. Ma, W. Yang, L. Fang, M. Sun, W. Wu, F. Xiao, F. Guo, et al. 2017. MicroRNA 301a promotes intestinal inflammation and colitis-associated cancer development by inhibiting BTG1. Gastroenterology 152 (6):1434–48.e15. doi: 10.1053/j.gastro.2017.01.049.
  • He, L., X. Zhou, Y. Liu, L. Zhou, and F. Li. 2022. Fecal miR-142a-3p from dextran sulfate sodium-challenge recovered mice prevents colitis by promoting the growth of Lactobacillus reuteri. Molecular Therapy 30 (1):388–99. doi: 10.1016/j.ymthe.2021.08.025.
  • Heaver, S. L., E. L. Johnson, and R. E. Ley. 2018. Sphingolipids in host-microbial interactions. Current Opinion in Microbiology 43:92–9. doi: 10.1016/j.mib.2017.12.011.
  • Herieka, M., T. A. Faraj, and C. Erridge. 2016. Reduced dietary intake of pro-inflammatory Toll-like receptor stimulants favourably modifies markers of cardiometabolic risk in healthy men. Nutrition, Metabolism, and Cardiovascular Diseases: NMCD 26 (3):194–200. doi: 10.1016/j.numecd.2015.12.001.
  • Hoban, A. E., R. M. Stilling, G. M Moloney, R. D. Moloney, F. Shanahan, T. G. Dinan, J. F. Cryan, and G. Clarke. 2017. Microbial regulation of microRNA expression in the amygdala and prefrontal cortex. Microbiome 5 (1):102. 25doi: 10.1186/s40168-017-0321-3.
  • Hou, Q., Y. Huang, Y. Wang, L. Liao, Z. Zhu, W. Zhang, Y. Liu, P. Li, X. Chen, and F. Liu. 2020. Lactobacillus casei LC01 regulates intestinal epithelial permeability through miR-144 targeting of OCLN and ZO1. Journal of Microbiology and Biotechnology 30 (10):1480–7. doi: 10.4014/jmb.2002.02059.
  • Hu, F., M. Wang, T. Xiao, B. Yin, L. He, W. Meng, M. Dong, and F. Liu. 2015. miR-30 promotes thermogenesis and the development of beige fat by targeting RIP140. Diabetes 64 (6):2056–68. doi: 10.2337/db14-1117.
  • Huang, F, and X. Wu. 2021. Brain neurotransmitter modulation by gut microbiota in anxiety and depression. Frontiers in Cell and Developmental Biology 9:649103. doi: 10.3389/fcell.2021.649103.
  • Ikemura, K., M. Yamamoto, S. Miyazaki, H. Mizutani, T. Iwamoto, and M. Okuda. 2013. MicroRNA-145 post-transcriptionally regulates the expression and function of P-glycoprotein in intestinal epithelial cells. Molecular Pharmacology 83 (2):399–405. doi: 10.1124/mol.112.081844.
  • Jia, L., C. R. Vianna, M. Fukuda, E. D. Berglund, C. Liu, C. Tao, K. Sun, T. Liu, M. J. Harper, C. E. Lee, et al. 2014. Hepatocyte Toll-like receptor 4 regulates obesity-induced inflammation and insulin resistance. Nature Communications 5:3878. doi: 10.1038/ncomms4878.
  • Jiang, S., K. Yan, B. Sun, S. Gao, X. Yang, Y. Ni, W. Ma, and R. Zhao. 2018. Long-term high-fat diet decreases hepatic iron storage associated with suppressing TFR2 and ZIP14 expression in rats. Journal of Agricultural and Food Chemistry 66 (44):11612–21. doi: 10.1021/acs.jafc.8b02974.
  • Jiang, Z., F. Yang, J. Qie, C. Jin, F. Zhang, J. Shen, and L. Zhang. 2021. TNF-α-induced miR-21-3p promotes intestinal barrier dysfunction by inhibiting MTDH expression. Frontiers in Pharmacology 12:722283. doi: 10.3389/fphar.2021.722283.
  • Jinnette, R., A. Narita, B. Manning, S. A. McNaughton, J. C. Mathers, and K. M. Livingstone. 2021. Does personalized nutrition advice improve dietary intake in healthy adults? A systematic review of randomized controlled trials. Advances in Nutrition (Bethesda, Md.) 12 (3):657–69. doi: 10.1093/advances/nmaa144.
  • Johansson, M. E, and G. C. Hansson. 2016. Immunological aspects of intestinal mucus and mucins. Nature Reviews. Immunology 16 (10):639–49.
  • Johnson, A. J., P. Vangay, G. A. Al-Ghalith, B. M. Hillmann, T. L. Ward, R. R. Shields-Cutler, A. D. Kim, A. K. Shmagel, A. N. Syed, J. Walter, et al. 2019. Daily sampling reveals personalized diet-microbiome associations in humans. Cell Host & Microbe 25 (6):789–802.e5. doi: 10.1016/j.chom.2019.05.005.
  • Johnston, D. G. W., M. A. Williams, C. A. Thaiss, R. Cabrera-Rubio, M. Raverdeau, C. McEntee, P. D. Cotter, E. Elinav, L. O'Neill, and S. C. Corr. 2018. Loss of microRNA-21 influences the gut microbiota, causing reduced susceptibility in a murine model of colitis. Journal of Crohn’s & Colitis 12 (7):835–48. doi: 10.1093/ecco-jcc/jjy038.
  • Jordan, S. D., M. Krüger, D. M. Willmes, N. Redemann, F. T. Wunderlich, H. S. Brönneke, C. Merkwirth, H. Kashkar, V. M. Olkkonen, T. Böttger, et al. 2011. Obesity-induced overexpression of miRNA-143 inhibits insulin-stimulated AKT activation and impairs glucose metabolism. Nature Cell Biology 13 (4):434–46. doi: 10.1038/ncb2211.
  • Jose, C. C., K. U. Luke, W. P. Laura, and R. Knight. 2012. The impact of the gut microbiota on human health: An integrative view. Cell 148 (6):1258–70. doi: 10.1016/j.cell.2012.01.035.
  • Ju, S., J. Mu, T. Dokland, X. Zhuang, Q. Wang, H. Jiang, X. Xiang, Z. B. Deng, B. Wang, L. Zhang, et al. 2013. Grape exosome-like nanoparticles induce intestinal stem cells and protect mice from DSS-induced colitis. Molecular Therapy: The Journal of the American Society of Gene Therapy 21 (7):1345–57. doi: 10.1038/mt.2013.64.
  • Just, S., S. Mondot, J. Ecker, K. Wegner, E. Rath, L. Gau, T. Streidl, G. Hery-Arnaud, S. Schmidt, T. R. Lesker, et al. 2018. The gut microbiota drives the impact of bile acids and fat source in diet on mouse metabolism. Microbiome 6 (1):134. doi: 10.1186/s40168-018-0510-8.
  • Kaput, J, and R. L. Rodriguez. 2004. Nutritional genomics: The next frontier in the postgenomic era. Physiological Genomics 16 (2):166–77. doi: 10.1152/physiolgenomics.00107.2003.
  • Kim, J., M. Okla, A. Erickson, T. Carr, S. K. Natarajan, and S. Chung. 2016. Eicosapentaenoic acid potentiates brown thermogenesis through FFAR4-dependent up-regulation of miR-30b and miR-378. The Journal of Biological Chemistry 291 (39):20551–62. doi: 10.1074/jbc.M116.721480.
  • Kim, W. K., D. H. Han, Y. J. Jang, S. Park, S. J. Jang, G. Lee, H. S. Han, and G. Ko. 2021. Alleviation of DSS-induced colitis via Lactobacillus acidophilus treatment in mice. Food & Function 12 (1):340–50. doi: 10.1039/d0fo01724h.
  • Koh, A, and F. Bäckhed. 2020. From association to causality: The role of the gut microbiota and its functional products on host metabolism. Molecular Cell 78 (4):584–96. doi: 10.1016/j.molcel.2020.03.005.
  • Koh, A., F. De Vadder, P. Kovatcheva-Datchary, and F. Bäckhed. 2016. From dietary fiber to host physiology: Short-chain fatty acids as key bacterial metabolites. Cell 165 (6):1332–45. doi: 10.1016/j.cell.2016.05.041.
  • Kolodziejczyk, A. A., D. Zheng, and E. Elinav. 2019. Diet-microbiota interactions and personalized nutrition. Nature Reviews. Microbiology 17 (12):742–53.
  • Krattinger, R., A. Boström, H. B. Schiöth, W. E. Thasler, J. Mwinyi, and G. A. Kullak-Ublick. 2016. Kullak-Ublick. 2016. microRNA-192 suppresses the expression of the farnesoid X receptor. American Journal of Physiology. Gastrointestinal and Liver Physiology 310 (11):G1044–51. doi: 10.1152/ajpgi.00297.2015.
  • Kumar, V., J. Mansfield, R. Fan, A. MacLean, J. Li, and M. Mohan. 2018. miR-130a and miR-212 Disrupt the intestinal epithelial barrier through modulation of PPARγ and Occludin expression in chronic simian immunodeficiency virus-infected rhesus macaques. Journal of Immunology (Baltimore, Md. : 1950) 200 (8):2677–89. doi: 10.4049/jimmunol.1701148.
  • Kundi, Z. M., J. C. Lee, J. Pihlajamäki, C. B. Chan, K. S. Leung, S. So, E. Nordlund, M. Kolehmainen, and H. El-Nezami. 2021. Dietary fiber from oat and rye brans ameliorate western diet-induced body weight gain and hepatic inflammation by the modulation of short-chain fatty acids, bile acids, and tryptophan metabolism. Molecular Nutrition & Food Research 65 (1):e1900580. doi: 10.1002/mnfr.201900580.
  • Kurilshikov, A., C. Medina-Gomez, R. Bacigalupe, D. Radjabzadeh, J. Wang, A. Demirkan, C. I. Le Roy, J. A. Raygoza Garay, C. T. Finnicum, X. Liu, et al. 2021. Large-scale association analyses identify host factors influencing human gut microbiome composition. Nature Genetics 53 (2):156–65. doi: 10.1038/s41588-020-00763-1.
  • Lakhan, R., V. S. Subramanian, and H. M. Said. 2017. Role of MicroRNA-423-5p in posttranscriptional regulation of the intestinal riboflavin transporter-3. American Journal of Physiology. Gastrointestinal and Liver Physiology 313 (6):G589–G598. doi: 10.1152/ajpgi.00238.2017.
  • Lei, C., J. Mu, Y. Teng, L. He, F. Xu, X. Zhang, K. Sundaram, A. Kumar, M. K. Sriwastva, M. B. Lawrenz, et al. 2020. Lemon exosome-like nanoparticles-manipulated probiotics protect mice from C. diff infection. iScience 23 (10):101571. doi: 10.1016/j.isci.2020.101571.
  • Lei, C., Y. Teng, L. He, M. Sayed, J. Mu, F. Xu, X. Zhang, A. Kumar, K. Sundaram, M. K. Sriwastva, et al. 2021. Lemon exosome-like nanoparticles enhance stress survival of gut bacteria by RNase P-mediated specific tRNA decay. iScience 24 (6):102511. doi: 10.1016/j.isci.2021.102511.
  • Li, A., J. Yang, C. Zhang, H. Chi, C. Zhang, T. Li, J. Zhang, and P. Du. 2021a. Lactobacillus acidophilus KLDS 1.0738 inhibits TLR4/NF-κB inflammatory pathway in β-lactoglobulin-induced macrophages via modulating miR-146a. Journal of Food Biochemistry 45 (10):e13662. doi: 10.1111/jfbc.13662.
  • Li, B., Y. Li, L. Li, Y. Yu, X. Gu, C. Liu, X. Long, Y. Yu, and X. Zuo. 2021b. Hsa_circ_0001021 regulates intestinal epithelial barrier function via sponging miR-224-5p in ulcerative colitis. Epigenomics 13 (17):1385–401. doi: 10.2217/epi-2021-0230.
  • Li, S. X., F. Imamura, Z. Ye, M. B. Schulze, J. Zheng, E. Ardanaz, L. Arriola, H. Boeing, C. Dow, G. Fagherazzi, et al. 2017. Interaction between genes and macronutrient intake on the risk of developing type 2 diabetes: Systematic review and findings from European Prospective Investigation into Cancer (EPIC)-InterAct. The American Journal of Clinical Nutrition 106 (1):263–75. doi: 10.3945/ajcn.116.150094.
  • Liang, Y., C. Lin, Y. Zhang, Y. Deng, C. Liu, and Q. Yang. 2018. Probiotic mixture of Lactobacillus and Bifidobacterium alleviates systemic adiposity and inflammation in non-alcoholic fatty liver disease rats through Gpr109a and the commensal metabolite butyrate. Inflammopharmacology 26 (4):1051–5. doi: 10.1007/s10787-018-0479-8.
  • Liu, B., Y. Lu, X. Chen, P. G. Muthuraj, X. Li, M. Pattabiraman, J. Zempleni, S. D. Kachman, S. K. Natarajan, and J. Yu. 2020. Protective role of shiitake mushroom-derived exosome-like nanoparticles in D-galactosamine and lipopolysaccharide-induced acute liver injury in mice. Nutrients 12 (2):477. doi: 10.3390/nu12020477.
  • Liu, S., A. P. da Cunha, R. M. Rezende, R. Cialic, Z. Wei, L. Bry, L. E. Comstock, R. Gandhi, and H. L. Weiner. 2016. The host shapes the gut microbiota via fecal microRNA. Cell Host & Microbe 19 (1):32–43. doi: 10.1016/j.chom.2015.12.005.
  • Liu, S., R. M. Rezende, T. G. Moreira, S. K. Tankou, L. M. Cox, M. Wu, A. Song, F. H. Dhang, Z. Wei, G. Costamagna, et al. 2019. Oral administration of miR-30d from feces of MS patients suppresses MS-like symptoms in mice by expanding Akkermansia muciniphila. Cell Host & Microbe 26 (6):779–94.e8. doi: 10.1016/j.chom.2019.10.008.
  • Liu, W., H. Cao, C. Ye, C. Chang, M. Lu, Y. Jing, D. Zhang, X. Yao, Z. Duan, H. Xia, et al. 2014. Hepatic miR-378 targets p110α and controls glucose and lipid homeostasis by modulating hepatic insulin signalling. Nature Communications 5:5684. doi: 10.1038/ncomms6684.
  • Liu, Y., K. Defourny, E. J. Smid, and T. Abee. 2018. Gram-positive bacterial extracellular vesicles and their impact on health and disease. Frontiers in Microbiology 9:1502. doi: 10.3389/fmicb.2018.01502.
  • Lopera-Maya, E. A., A. Kurilshikov, A. van der Graaf, S. Hu, S. Andreu-Sánchez, L. Chen, A. V. Vila, R. Gacesa, T. Sinha, V. Collij, et al. 2022. Effect of host genetics on the gut microbiome in 7,738 participants of the Dutch Microbiome Project. Nature Genetics 54 (2):143–51. doi: 10.1038/s41588-021-00992-y.
  • López-Almela, I., M. Romaní-Pérez, C. Bullich-Vilarrubias, A. Benítez-Páez, E. M. Gómez Del Pulgar, R. Francés, G. Liebisch, and Y. Sanz. 2021. Bacteroides uniformis combined with fiber amplifies metabolic and immune benefits in obese mice. Gut Microbes 13 (1):1–20. doi: 10.1080/19490976.2020.1865706.
  • Ludwig, D. S., L. J. Aronne, A. Astrup, R. de Cabo, L. C. Cantley, M. I. Friedman, S. B. Heymsfield, J. D. Johnson, J. C. King, R. M. Krauss, et al. 2021. The carbohydrate-insulin model: A physiological perspective on the obesity pandemic. The American Journal of Clinical Nutrition 114 (6):1873–85. doi: 10.1093/ajcn/nqab270.
  • Ma, W., L. H. Nguyen, M. Song, D. D. Wang, E. A. Franzosa, Y. Cao, A. Joshi, D. A. Drew, R. Mehta, K. L. Ivey, et al. 2021. Dietary fiber intake, the gut microbiome, and chronic systemic inflammation in a cohort of adult men. Genome Medicine 13 (1):102. doi: 10.1186/s13073-021-00921-y.
  • Masui, R., M. Sasaki, Y. Funaki, N. Ogasawara, M. Mizuno, A. Iida, S. Izawa, Y. Kondo, Y. Ito, Y. Tamura, et al. 2013. G protein-coupled receptor 43 moderates gut inflammation through cytokine regulation from mononuclear cells. Inflammatory Bowel Diseases 19 (13):2848–56.
  • McIntosh, M, and C. Miller. 2001. A diet containing food rich in soluble and insoluble fiber improves glycemic control and reduces hyperlipidemia among patients with type 2 diabetes mellitus. Nutrition Reviews 59 (2):52–5. doi: 10.1111/j.1753-4887.2001.tb06976.x.
  • McKenna, L. B., J. Schug, A. Vourekas, J. B. McKenna, N. C. Bramswig, J. R. Friedman, and K. H. Kaestner. 2010. MicroRNAs control intestinal epithelial differentiation, architecture, and barrier function. Gastroenterology 139 (5):1654–64.
  • Mohan, M., C. T. Chow, C. N. Ryan, L. S. Chan, J. Dufour, P. P. Aye, J. Blanchard, C. P. Moehs, and K. Sestak. 2016. Dietary gluten-induced gut dysbiosis is accompanied by selective upregulation of microRNAs with intestinal tight junction and bacteria-binding motifs in rhesus macaque model of celiac disease. Nutrients 8 (11):684. doi: 10.3390/nu8110684.
  • Moloney, G. M., M. F. Viola, A. E. Hoban, T. G. Dinan, and J. F. Cryan. 2018. Faecal microRNAs: Indicators of imbalance at the host-microbe interface? Beneficial Microbes 9 (2):175–83. doi: 10.3920/BM2017.0013.
  • Mori, M., H. Nakagami, G. Rodriguez-Araujo, K. Nimura, and Y. Kaneda. 2012. Essential role for miR-196a in brown adipogenesis of white fat progenitor cells. PLoS Biology 10 (4):e1001314. doi: 10.1371/journal.pbio.1001314.
  • Morrison, K. E., E. Jašarević, C. D. Howard, and T. L. Bale. 2020. It’s the fiber, not the fat: Significant effects of dietary challenge on the gut microbiome. Microbiome 8 (1):15. doi: 10.1186/s40168-020-0791-6.
  • Mullins, V. A., W. Bresette, L. Johnstone, B. Hallmark, and F. H. Chilton. 2020. Genomics in personalized nutrition: Can you "eat for your genes"? Nutrients 12 (10):3118. 2020doi: 10.3390/nu12103118.
  • Murakami, M., N. Une, M. Nishizawa, S. Suzuki, H. Ito, and T. Horiuchi. 2013. Incretin secretion stimulated by ursodeoxycholic acid in healthy subjects. SpringerPlus 2 (1):20. doi: 10.1186/2193-1801-2-20.
  • Murga-Garrido, S. M., Q. Hong, T. L. Cross, E. R. Hutchison, J. Han, S. P. Thomas, E. I. Vivas, J. Denu, D. G. Ceschin, Z. Z. Tang, et al. 2021. Gut microbiome variation modulates the effects of dietary fiber on host metabolism. Microbiome 9 (1):117. doi: 10.1186/s40168-021-01061-6.
  • Nguyen, H. T., G. Dalmasso, S. Müller, J. Carrière, F. Seibold, and A. Darfeuille-Michaud. 2014. Crohn’s disease-associated adherent invasive Escherichia coli modulate levels of microRNAs in intestinal epithelial cells to reduce autophagy. Gastroenterology 146 (2):508–19. doi: 10.1053/j.gastro.2013.10.021.
  • Nitzan, M., R. Rehani, and H. Margalit. 2017. Integration of bacterial small RNAs in regulatory networks. Annual Review of Biophysics 46:131–48. doi: 10.1146/annurev-biophys-070816-034058.
  • Ohira, H., Y. Fujioka, C. Katagiri, R. Mamoto, M. Aoyama-Ishikawa, K. Amako, Y. Izumi, S. Nishiumi, M. Yoshida, M. Usami, et al. 2013. Butyrate attenuates inflammation and lipolysis generated by the interaction of adipocytes and macrophages. Journal of Atherosclerosis and Thrombosis 20 (5):425–42. doi: 10.5551/jat.15065.
  • Peña-Romero, A. C., D. Navas-Carrillo, F. Marín, and E. Orenes-Piñero. 2018. The future of nutrition: Nutrigenomics and nutrigenetics in obesity and cardiovascular diseases. Critical Reviews in Food Science and Nutrition 58 (17):3030–41. doi: 10.1080/10408398.2017.1349731.
  • Plovier, H., A. Everard, C. Druart, C. Depommier, M. Van Hul, L. Geurts, J. Chilloux, N. Ottman, T. Duparc, L. Lichtenstein, et al. 2017. A purified membrane protein from Akkermansia muciniphila or the pasteurized bacterium improves metabolism in obese and diabetic mice. Nature Medicine 23 (1):107–13. doi: 10.1038/nm.4236.
  • Poyet, M., M. Groussin, S. M. Gibbons, J. Avila-Pacheco, X. Jiang, S. M. Kearney, A. R. Perrotta, B. Berdy, S. Zhao, T. D. Lieberman, et al. 2019. A library of human gut bacterial isolates paired with longitudinal multiomics data enables mechanistic microbiome research. Nature Medicine 25 (9):1442–52. doi: 10.1038/s41591-019-0559-3.
  • Precone, V., T. Beccari, L. Stuppia, M. Baglivo, S. Paolacci, E. Manara, G. A. D. Miggiano, B. Falsini, A. Trifirò, A. Zanlari, et al. 2019. Taste, olfactory and texture related genes and food choices: Implications on health status. European Review for Medical and Pharmacological Sciences 23 (3):1305–21.
  • Perino, A., L. A. Velázquez-Villegas, N. Bresciani, Y. Sun, Q. Huang, V. S. Fénelon, A. Castellanos-Jankiewicz, P. Zizzari, G. Bruschetta, S. Jin, et al. 2021. Central anorexigenic actions of bile acids are mediated by TGR5. Nature Metabolism 3 (5):595–603. doi: 10.1038/s42255-021-00398-4.
  • Prisciandaro, L., M. Geier, R. Butler, A. Cummins, and G. Howarth. 2009. Probiotics and their derivatives as treatments for inflammatory bowel disease. Inflammatory Bowel Diseases 15 (12):1906–14.
  • Psichas, A., M. L. Sleeth, K. G. Murphy, L. Brooks, G. A. Bewick, A. C. Hanyaloglu, M. A. Ghatei, S. R. Bloom, and G. Frost. 2015. The short chain fatty acid propionate stimulates GLP-1 and PYY secretion via free fatty acid receptor 2 in rodents. International Journal of Obesity (2005) 39 (3):424–9. doi: 10.1038/ijo.2014.153.
  • Pullen, T. J., G. da Silva Xavier, G. Kelsey, and G. A. Rutter. 2011. miR-29a and miR-29b contribute to pancreatic beta-cell-specific silencing of monocarboxylate transporter 1 (Mct1). Molecular and Cellular Biology 31 (15):3182–94. doi: 10.1128/MCB.01433-10.
  • Qi, Q., J. Li, B. Yu, J. Y. Moon, J. C. Chai, J. Merino, J. Hu, M. Ruiz-Canela, C. Rebholz, Z. Wang, et al. 2022. Host and gut microbial tryptophan metabolism and type 2 diabetes: An integrative analysis of host genetics, diet, gut microbiome and circulating metabolites in cohort studies. Gut 71 (6):1095–105. doi: 10.1136/gutjnl-2021-324053.
  • Qin, Y., L. Jia, H. Liu, W. Ma, X. Ren, H. Li, Y. Liu, H. Li, S. Ma, M. Liu, et al. 2021. Macrophage deletion of Noc4l triggers endosomal TLR4/TRIF signal and leads to insulin resistance. Nature Communications 12 (1):6121. doi: 10.1038/s41467-021-26408-3.
  • Qin, Y., A. S. Havulinna, Y. Liu, P. Jousilahti, S. C. Ritchie, A. Tokolyi, J. G. Sanders, L. Valsta, M. Brożyńska, Q. Zhu, et al. 2022. Combined effects of host genetics and diet on human gut microbiota and incident disease in a single population cohort. Nature Genetics 54 (2):134–42. doi: 10.1038/s41588-021-00991-z.
  • Quan, S. Y., X. M. Nan, K. Wang, Y. G. Zhao, L. S. Jiang, J. H. Yao, and B. H. Xiong. 2020. Replacement of forage fiber with non-forage fiber sources in dairy cow diets changes milk extracellular vesicle-miRNA expression. Food & Function 11 (3):2154–62. doi: 10.1039/c9fo03097b.
  • Ramírez, C. M., N. Rotllan, A. V. Vlassov, A. Dávalos, M. Li, L. Goedeke, J. F. Aranda, D. Cirera-Salinas, E. Araldi, A. Salerno, et al. 2013. Control of cholesterol metabolism and plasma high-density lipoprotein levels by microRNA-144. Circulation Research 112 (12):1592–601. doi: 10.1161/CIRCRESAHA.112.300626.
  • Rawat, M., M. Nighot, R. Al-Sadi, Y. Gupta, D. Viszwapriya, G. Yochum, W. Koltun, and T. Y. Ma. 2020. IL1B increases intestinal tight junction permeability by up-regulation of miR200C-3p, which degrades Occludin mRNA. Gastroenterology 159 (4):1375–89. doi: 10.1053/j.gastro.2020.06.038.
  • Reddon, H., J. L. Guéant, and D. Meyre. 2016. The importance of gene-environment interactions in human obesity. Clinical Science (London, England: 1979) 130 (18):1571–97. doi: 10.1042/CS20160221.
  • Rodríguez-Nogales, A., F. Algieri, J. Garrido-Mesa, T. Vezza, M. P. Utrilla, N. Chueca, F. Garcia, M. Olivares, M. E. Rodríguez-Cabezas, and J. Gálvez. 2017. Differential intestinal anti-inflammatory effects of Lactobacillus fermentum and Lactobacillus salivarius in DSS mouse colitis: Impact on microRNAs expression and microbiota composition. Molecular Nutrition & Food Research 61 (11):1700144–1002. doi: 10.1002/mnfr.201700144.
  • Rodríguez-Nogales, A., F. Algieri, J. Garrido-Mesa, T. Vezza, M. P. Utrilla, N. Chueca, J. A. Fernández-Caballero, F. García, M. E. Rodríguez-Cabezas, and J. Gálvez. 2018a. The administration of Escherichia coli Nissle 1917 ameliorates development of DSS-induced colitis in mice. Frontiers in Pharmacology 9:468. doi: 10.3389/fphar.2018.00468.
  • Rodríguez-Nogales, A., F. Algieri, J. Garrido-Mesa, T. Vezza, M. P. Utrilla, N. Chueca, F. García, M. E. Rodríguez-Cabezas, and J. Gálvez. 2018b. Intestinal anti-inflammatory effect of the probiotic Saccharomyces boulardii in DSS-induced colitis in mice: Impact on microRNAs expression and gut microbiota composition. The Journal of Nutritional Biochemistry 61:129–39. doi: 10.1016/j.jnutbio.2018.08.005.
  • Rothschild, D., O. Weissbrod, E. Barkan, A. Kurilshikov, T. Korem, D. Zeevi, P. I. Costea, A. Godneva, I. N. Kalka, N. Bar, et al. 2018. Environment dominates over host genetics in shaping human gut microbiota. Nature 555 (7695):210–5. doi: 10.1038/nature25973.
  • Ruiz-Roso, M. B., J. Gil-Zamorano, M. C. López de Las Hazas, J. Tomé-Carneiro, M. C. Crespo, M. J. Latasa, O. Briand, D. Sánchez-López, A. I. Ortiz, F. Visioli, et al. 2020. Intestinal lipid metabolism genes regulated by miRNAs. Frontiers in Genetics 11:707. doi: 10.3389/fgene.2020.00707.
  • Saad, M. J., A. Santos, and P. O. Prada. 2016. Linking gut microbiota and inflammation to obesity and insulin resistance. Physiology (Bethesda, Md.) 31 (4):283–93.
  • Sabharwal, H., C. Cichon, T. A. Ölschläger, U. Sonnenborn, and M. A. Schmidt. 2016. Interleukin-8, CXCL1, and MicroRNA miR-146a responses to probiotic Escherichia coli Nissle 1917 and enteropathogenic E. coli in human intestinal epithelial T84 and monocytic THP-1 cells after apical or basolateral infection. Infection and Immunity 84 (9):2482–92. doi: 10.1128/IAI.00402-16.
  • Sanna, S., A. Kurilshikov, A. van der Graaf, J. Fu, and A. Zhernakova. 2022. Challenges and future directions for studying effects of host genetics on the gut microbiome. Nature Genetics 54 (2):100–6. doi: 10.1038/s41588-021-00983-z.
  • Santos, A. A., M. B. Afonso, R. S. Ramiro, D. Pires, M. Pimentel, R. E. Castro, and C. Rodrigues. 2020. Host miRNA-21 promotes liver dysfunction by targeting small intestinal Lactobacillus in mice. Gut Microbes 12 (1):1–18. doi: 10.1080/19490976.2020.1840766.
  • Sarshar, M., D. Scribano, C. Ambrosi, A. T. Palamara, and A. Masotti. 2020. Fecal microRNAs as innovative biomarkers of intestinal diseases and effective players in host-microbiome interactions. Cancers 12 (8):2174. doi: 10.3390/cancers12082174.
  • Sauvaitre, T., L. Etienne-Mesmin, A. Sivignon, P. Mosoni, C. M. Courtin, T. Van de Wiele, and S. Blanquet-Diot. 2021. Tripartite relationship between gut microbiota, intestinal mucus and dietary fibers: Towards preventive strategies against enteric infections. FEMS Microbiology Reviews 45 (2):fuaa052. doi: 10.1093/femsre/fuaa052.
  • Sedgeman, L. R., C. Beysen, M. A. Ramirez Solano, D. L. Michell, Q. Sheng, S. Zhao, S. Turner, M. F. Linton, and K. C. Vickers. 2019. Beta cell secretion of miR-375 to HDL is inversely associated with insulin secretion. Scientific Reports 9 (1):3803. doi: 10.1038/s41598-019-40338-7.
  • Serino, M., E. Luche, S. Gres, A. Baylac, M. Bergé, C. Cenac, A. Waget, P. Klopp, J. Iacovoni, C. Klopp, et al. 2012. Metabolic adaptation to a high-fat diet is associated with a change in the gut microbiota. Gut 61 (4):543–53. doi: 10.1136/gutjnl-2011-301012.
  • Shen, S., J. Zhao, Y. Dai, F. Chen, Z. Zhang, J. Yu, and K. Wang. 2020. Methamphetamine-induced alterations in intestinal mucosal barrier function occur via the microRNA-181c/TNF-α/tight junction axis. Toxicology Letters 321:73–82. doi: 10.1016/j.toxlet.2019.12.020.
  • Shen, Y., M. Zhou, J. Yan, Z. Gong, Y. Xiao, C. Zhang, P. Du, and Y. Chen. 2017. miR-200b inhibits TNF-α-induced IL-8 secretion and tight junction disruption of intestinal epithelial cells in vitro. American Journal of Physiology. Gastrointestinal and Liver Physiology 312 (2):G123–G132. doi: 10.1152/ajpgi.00316.2016.
  • Shome, S., R. L. Jernigan, D. C. Beitz, S. Clark, and E. D. Testroet. 2021. Non-coding RNA in raw and commercially processed milk and putative targets related to growth and immune-response. BMC Genomics 22 (1):749. doi: 10.1186/s12864-021-07964-w.
  • Sims, E. K., A. Carr, R. A. Oram, L. A. DiMeglio, and C. Evans-Molina. 2021. 100 years of insulin: Celebrating the past, present and future of diabetes therapy. Nature Medicine 27 (7):1154–64. doi: 10.1038/s41591-021-01418-2.
  • Soh, J., J. Iqbal, J. Queiroz, C. Fernandez-Hernando, and M. M. Hussain. 2013. MicroRNA-30c reduces hyperlipidemia and atherosclerosis in mice by decreasing lipid synthesis and lipoprotein secretion. Nature Medicine 19 (7):892–900. doi: 10.1038/nm.3200.
  • Sonnenburg, E. D, and J. L. Sonnenburg. 2014. Starving our microbial self: The deleterious consequences of a diet deficient in microbiota-accessible carbohydrates. Cell Metabolism 20 (5):779–86. doi: 10.1016/j.cmet.2014.07.003.
  • Strandwitz, P. 2018. Neurotransmitter modulation by the gut microbiota. Brain Research 1693 (Pt B):128–33. doi: 10.1016/j.brainres.2018.03.015.
  • Subramanian, V. S., S. Sabui, J. S. Marchant, and H. M. Said. 2019. MicroRNA-103a regulates sodium-dependent vitamin C transporter-1 expression in intestinal epithelial cells. The Journal of Nutritional Biochemistry 65:46–53. doi: 10.1016/j.jnutbio.2018.12.001.
  • Summers, S. A., B. Chaurasia, and W. L. Holland. 2019. Metabolic messengers: Ceramides. Nature Metabolism 1 (11):1051–8. doi: 10.1038/s42255-019-0134-8.
  • Sun, L., Y. Pang, X. Wang, Q. Wu, H. Liu, B. Liu, G. Liu, M. Ye, W. Kong, and C. Jiang. 2019. Ablation of gut microbiota alleviates obesity-induced hepatic steatosis and glucose intolerance by modulating bile acid metabolism in hamsters. Acta Pharmaceutica Sinica. B 9 (4):702–10. doi: 10.1016/j.apsb.2019.02.004.
  • Sun, L., C. Xie, G. Wang, Y. Wu, Q. Wu, X. Wang, J. Liu, Y. Deng, J. Xia, B. Chen, et al. 2018. Gut microbiota and intestinal FXR mediate the clinical benefits of metformin. Nature Medicine 24 (12):1919–29. doi: 10.1038/s41591-018-0222-4.
  • Taibi, A., N. Singh, J. C. Hen, S. Arioli, S. Guglielmetti, and E. M. Comelli. 2017. Time- and strain-specific downregulation of intestinal EPAS1 via miR-148a by Bifidobacterium bifidum. Molecular Nutrition & Food Research 61 (5):1600596. doi: 10.1002/mnfr.201600596.
  • Tanes, C., K. Bittinger, Y. Gao, E. S. Friedman, L. Nessel, U. R. Paladhi, L. Chau, E. Panfen, M. A. Fischbach, J. Braun, et al. 2021. Role of dietary fiber in the recovery of the human gut microbiome and its metabolome. Cell Host & Microbe 29 (3):394–407.e5. doi: 10.1016/j.chom.2020.12.012.
  • Tarallo, S., B. Pardini, G. Mancuso, F. Rosa, C. D. Gaetano, F. Rosina, P. Vineis, and A. Naccarati. 2014. MicroRNA expression in relation to different dietary habits: A comparison in stool and plasma samples. Mutagenesis 29 (5):385–91. doi: 10.1093/mutage/geu028.
  • Tarallo, S., G. Ferrero, F. De Filippis, A. Francavilla, E. Pasolli, V. Panero, F. Cordero, N. Segata, S. Grioni, R. G. Pensa, et al. 2022. Stool microRNA profiles reflect different dietary and gut microbiome patterns in healthy individuals. Gut 71 (7):1302–14. doi: 10.1136/gutjnl-2021-325168.
  • Teng, Y., Y. Ren, M. Sayed, X. Hu, C. Lei, A. Kumar, E. Hutchins, J. Mu, Z. Deng, C. Luo, et al. 2018. Plant-derived exosomal microRNAs shape the gut microbiota. Cell Host & Microbe 24 (5):637–52.e8. doi: 10.1016/j.chom.2018.10.001.
  • Tilg, H, and A. Kaser. 2011. Gut microbiome, obesity, and metabolic dysfunction. The Journal of Clinical Investigation 121 (6):2126–32. doi: 10.1172/JCI58109.
  • Tong, L., H. Hao, X. Zhang, Z. Zhang, Y. Lv, L. Zhang, and H. Yi. 2020. Oral Administration of Bovine Milk-derived extracellular vesicles alters the gut microbiota and enhances intestinal immunity in mice. Molecular Nutrition & Food Research 64 (8):e1901251. doi: 10.1002/mnfr.201901251.
  • Tong, L., H. Hao, Z. Zhang, Y. Lv, X. Liang, Q. Liu, T. Liu, P. Gong, L. Zhang, F. Cao, et al. 2021a. Milk-derived extracellular vesicles alleviate ulcerative colitis by regulating the gut immunity and reshaping the gut microbiota. Theranostics 11 (17):8570–86. doi: 10.7150/thno.62046.
  • Tong, L., X. Zhang, H. Hao, Q. Liu, Z. Zhou, X. Liang, T. Liu, P. Gong, L. Zhang, Z. Zhai, et al. 2021b. Lactobacillus rhamnosus GG derived extracellular vesicles modulate gut microbiota and attenuate inflammatory in DSS-induced colitis mice. Nutrients 13 (10):3319. doi: 10.3390/nu13103319.
  • Trajkovski, M., J. Hausser, J. Soutschek, B. Bhat, A. Akin, M. Zavolan, M. H. Heim, and M. Stoffel. 2011. MicroRNAs 103 and 107 regulate insulin sensitivity. Nature 474 (7353):649–53. doi: 10.1038/nature10112.
  • Tsatsos, N. G., L. B. Augustin, G. W. Anderson, H. C. Towle, and C. N. Mariash. 2008. Hepatic expression of the SPOT 14 (S14) paralog S14-related (Mid1 interacting protein) is regulated by dietary carbohydrate. Endocrinology 149 (10):5155–61. doi: 10.1210/en.2008-0215.
  • Turnbaugh, P. J., R. E. Ley, M. A. Mahowald, V. Magrini, E. R. Mardis, and J. I. Gordon. 2006. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 444 (7122):1027–31. doi: 10.1038/nature05414.
  • Veltman, K., S. Hummel, C. Cichon, U. Sonnenborn, and M. A. Schmidt. 2012. Identification of specific miRNAs targeting proteins of the apical junctional complex that simulate the probiotic effect of E. coli Nissle 1917 on T84 epithelial cells. The International Journal of Biochemistry & Cell Biology 44 (2):341–9. doi: 10.1016/j.biocel.2011.11.006.
  • Vickers, K. C., S. R. Landstreet, M. G. Levin, B. M. Shoucri, C. L. Toth, R. C. Taylor, B. T. Palmisano, F. Tabet, H. L. Cui, K. A. Rye, et al. 2014. MicroRNA-223 coordinates cholesterol homeostasis. Proceedings of the National Academy of Sciences of the United States of America 111 (40):14518–23. doi: 10.1073/pnas.1215767111.
  • Viennois, E., B. Chassaing, A. Tahsin, A. Pujada, L. Wang, A. T. Gewirtz, and D. Merlin. 2019. Host-derived fecal microRNAs can indicate gut microbiota healthiness and ability to induce inflammation. Theranostics 9 (15):4542–57. doi: 10.7150/thno.35282.
  • Virtue, A. T., S. J. McCright, J. M. Wright, M. T. Jimenez, W. K. Mowel, J. J. Kotzin, L. Joannas, M. G. Basavappa, S. P. Spencer, M. L. Clark, et al. 2019. The gut microbiota regulates white adipose tissue inflammation and obesity via a family of microRNAs. Science Translational Medicine 11 (496) eaav1892. doi: 10.1126/scitranslmed.aav1892.
  • Wahlström, A., S. I. Sayin, H. U. Marschall, and F. Bäckhed. 2016. Intestinal crosstalk between bile acids and microbiota and its impact on host metabolism. Cell Metabolism 24 (1):41–50. doi: 10.1016/j.cmet.2016.05.005.
  • Wang, D. D, and F. B. Hu. 2018. Precision nutrition for prevention and management of type 2 diabetes. The Lancet. Diabetes & Endocrinology 6 (5):416–26. doi: 10.1016/S2213-8587(18)30037-8.
  • Wang, H., X. Jiang, J. Wu, L. Zhang, J. Huang, Y. Zhang, X. Zou, and B. Liang. 2016. Iron overload coordinately promotes ferritin expression and fat accumulation in Caenorhabditis elegans. Genetics 203 (1):241–53. doi: 10.1534/genetics.116.186742.
  • Wang, J. Y., Y. H. Cui, L. Xiao, H. K. Chung, Y. Zhang, J. N. Rao, M. Gorospe, and J. Y. Wang. 2018. Regulation of intestinal epithelial barrier function by long noncoding RNA uc.173 through interaction with microRNA 29b. Molecular and Cellular Biology 38 (13):e00010–18. doi: 10.1128/MCB.00010-18.
  • Wang, Q., Q. Sun, J. Wang, X. Qiu, R. Qi, and J. Huang. 2020. Identification of differentially expressed miRNAs after Lactobacillus reuteri treatment in the ileum mucosa of piglets. Genes & Genomics 42 (11):1327–38. doi: 10.1007/s13258-020-00998-6.
  • Wei, M., F. Huang, L. Zhao, Y. Zhang, W. Yang, S. Wang, M. Li, X. Han, K. Ge, C. Qu, et al. 2020. A dysregulated bile acid-gut microbiota axis contributes to obesity susceptibility. EBioMedicine 55:102766. doi: 10.1016/j.ebiom.2020.102766.
  • Wu, J., T. Dong, T. Chen, J. Sun, J. Luo, J. He, L. Wei, B. Zeng, H. Zhang, W. Li, et al. 2020. Hepatic exosome-derived miR-130a-3p attenuates glucose intolerance via suppressing PHLPP2 gene in adipocyte. Metabolism 103:154006. doi: 10.1016/j.metabol.2019.154006.
  • Wu, Q., X. Liang, K. Wang, J. Lin, X. Wang, P. Wang, Y. Zhang, Q. Nie, H. Liu, Z. Zhang, et al. 2021a. Intestinal hypoxia-inducible factor 2α regulates lactate levels to shape the gut microbiome and alter thermogenesis. Cell Metabolism 33 (10):1988–2003.e7. doi: 10.1016/j.cmet.2021.07.007.
  • Wu, Y., C. Z. Wang, J. Y. Wan, H. Yao, and C. S. Yuan. 2021b. Dissecting the interplay mechanism between epigenetics and gut microbiota: Health maintenance and disease prevention. International Journal of Molecular Sciences 22 (13):6933. doi: 10.3390/ijms22136933.
  • Xing, S. C., C. B. Huang, R. T. Wu, Y. Y. Ang, J. Y. Chen, J. D. Mi, Y. B. Wu, Y. Wang, and X. D. Liao. 2021. Breed differences in the expression levels of gga-miR-222a in laying hens influenced H2S production by regulating methionine synthase genes in gut bacteria. Microbiome 9 (1):177. doi: 10.1186/s40168-021-01098-7.
  • Xu, F., Y. Fu, T.-Y. Sun, Z. Jiang, Z. Miao, M. Shuai, W. Gou, C.-W. Ling, J. Yang, J. Wang, et al. 2020. The interplay between host genetics and the gut microbiome reveals common and distinct microbiome features for complex human diseases. Microbiome 8 (1):145. doi: 10.1186/s40168-020-00923-9.
  • Yagai, T., T. Yan, Y. Luo, S. Takahashi, D. Aibara, D. Kim, C. N. Brocker, M. Levi, H. Motohashi, and F. J. Gonzalez. 2021. Feedback repression of PPARα signaling by Let-7 microRNA. Cell Reports 36 (6):109506. doi: 10.1016/j.celrep.2021.109506.
  • Yang, H., J. Wu, X. Huang, Y. Zhou, Y. Zhang, M. Liu, Q. Liu, S. Ke, M. He, H. Fu, et al. 2022a. ABO genotype alters the gut microbiota by regulating GalNAc levels in pigs. Nature 606 (7913):358–67. doi: 10.1038/s41586-022-04769-z.
  • Yang, X., J. Wan, N. Li, C. He, Y. Zhang, Y. Ren, X. Li, Y. Zhu, F. Liu, L. Xia, et al. 2022b. MiR155 disrupts the intestinal barrier by inducing intestinal inflammation and altering the intestinal microecology in severe acute pancreatitis. Digestive Diseases and Sciences 67 (6):2209–19. doi: 10.1007/s10620-021-07022-1.
  • Yang, Y., Y. Ma, C. Shi, H. Chen, H. Zhang, N. Chen, P. Zhang, F. Wang, J. Yang, J. Yang, et al. 2013. Overexpression of miR-21 in patients with ulcerative colitis impairs intestinal epithelial barrier function through targeting the Rho GTPase RhoB. Biochemical and Biophysical Research Communications 434 (4):746–52. doi: 10.1016/j.bbrc.2013.03.122.
  • Yao, Y., X. Cai, W. Fei, Y. Ye, M. Zhao, and C. Zheng. 2022. The role of short-chain fatty acids in immunity, inflammation and metabolism. Critical Reviews in Food Science and Nutrition 62 (1):1–12. doi: 10.1080/10408398.2020.1854675.
  • Ye, D., S. Guo, R. Al-Sadi, and T. Y. Ma. 2011. MicroRNA regulation of intestinal epithelial tight junction permeability. Gastroenterology 141 (4):1323–33. doi: 10.1053/j.gastro.2011.07.005.
  • Ying, W., M. Riopel, G. Bandyopadhyay, Y. Dong, A. Birmingham, J. B. Seo, J. M. Ofrecio, J. Wollam, A. Hernandez-Carretero, W. Fu, et al. 2017. Adipose tissue macrophage-derived exosomal miRNAs can modulate in vivo and in vitro insulin sensitivity. Cell 171 (2):372–84.e12. doi: 10.1016/j.cell.2017.08.035.
  • Yu, T., X. J. Lu, J. Y. Li, T. D. Shan, C. Z. Huang, H. Ouyang, H. S. Yang, J. H. Xu, W. Zhong, Z. S. Xia, et al. 2016. Overexpression of miR-429 impairs intestinal barrier function in diabetic mice by down-regulating occludin expression. Cell and Tissue Research 366 (2):341–52. doi: 10.1007/s00441-016-2435-5.
  • Zangara, M. T., I. Johnston, E. E. Johnson, and C. McDonald. 2021. Mediators of metabolism: An unconventional role for NOD1 and NOD2. International Journal of Molecular Sciences 22 (3):1156. doi: 10.3390/ijms22031156.
  • Zeevi, D., T. Korem, N. Zmora, D. Israeli, D. Rothschild, A. Weinberger, O. Ben-Yacov, D. Lador, T. Avnit-Sagi, M. Lotan-Pompan, et al. 2015. Personalized nutrition by prediction of glycemic responses. Cell 163 (5):1079–94. doi: 10.1016/j.cell.2015.11.001.
  • Zhang, L., D. Hou, X. Chen, D. Li, L. Zhu, Y. Zhang, J. Li, Z. Bian, X. Liang, X. Cai, et al. 2012. Exogenous plant MIR168a specifically targets mammalian LDLRAP1: Evidence of cross-kingdom regulation by microRNA. Cell Research 22 (1):107–26. doi: 10.1038/cr.2011.158.
  • Zhang, M, and X. J. Yang. 2016. Effects of a high fat diet on intestinal microbiota and gastrointestinal diseases. World Journal of Gastroenterology 22 (40):8905–9. doi: 10.3748/wjg.v22.i40.8905.
  • Zhang, Y., C. Li, H. Li, Y. Song, Y. Zhao, L. Zhai, H. Wang, R. Zhong, H. Tang, and D. Zhu. 2016. miR-378 activates the pyruvate-PEP futile cycle and enhances lipolysis to ameliorate obesity in mice. EBioMedicine 5:93–104. doi: 10.1016/j.ebiom.2016.01.035.
  • Zhang, Z., J. B. Funcke, Z. Zi, S. Zhao, L. G. Straub, Y. Zhu, Q. Zhu, C. Crewe, Y. A. An, S. Chen, et al. 2021. Adipocyte iron levels impinge on a fat-gut crosstalk to regulate intestinal lipid absorption and mediate protection from obesity. Cell Metabolism 33 (8):1624–39.e9. doi: 10.1016/j.cmet.2021.06.001.
  • Zhao, L. 2013. The gut microbiota and obesity: From correlation to causality. Nature Reviews. Microbiology 11 (9):639–47.
  • Zhao, X., H. Zeng, L. Lei, X. Tong, L. Yang, Y. Yang, S. Li, Y. Zhou, L. Luo, J. Huang, et al. 2021. Tight junctions and their regulation by non-coding RNAs. International Journal of Biological Sciences 17 (3):712–27. doi: 10.7150/ijbs.45885.
  • Zheng, H., X. Dong, N. Liu, W. Xia, L. Zhou, X. Chen, Z. Yang, and X. Chen. 2016. Regulation and mechanism of mouse miR-130a/b in metabolism-related inflammation. The International Journal of Biochemistry & Cell Biology 74:72–83. doi: 10.1016/j.biocel.2016.02.021.
  • Zhou, M., L. J. Johnston, C. Wu, and X. Ma. 2021. Gut microbiota and its metabolites: Bridge of dietary nutrients and obesity-related diseases. Critical Reviews in Food Science and Nutrition. Advance Online Publication :1–18. doi: 10.1080/10408398.2021.1986466.
  • Zhu, H., N. Shyh-Chang, A. V. Segrè, G. Shinoda, S. P. Shah, W. S. Einhorn, A. Takeuchi, J. M. Engreitz, J. P. Hagan, M. G. Kharas, et al. 2011. The Lin28/let-7 axis regulates glucose metabolism. Cell 147 (1):81–94. doi: 10.1016/j.cell.2011.08.033.
  • Zhu, Z., J. Huang, X. Li, J. Xing, Q. Chen, R. Liu, F. Hua, Z. Qiu, Y. Song, C. Bai, et al. 2020. Gut microbiota regulate tumor metastasis via circRNA/miRNA networks. Gut Microbes 12 (1):1788891. doi: 10.1080/19490976.2020.1788891.
  • Zhuang, R., J. N. Rao, T. Zou, L. Liu, L. Xiao, S. Cao, N. Z. Hansraj, M. Gorospe, and J. Y. Wang. 2013. miR-195 competes with HuR to modulate stim1 mRNA stability and regulate cell migration. Nucleic Acids Research 41 (16):7905–19. doi: 10.1093/nar/gkt565.
  • Zmora, N., J. Suez, and E. Elinav. 2019. You are what you eat: Diet, health and the gut microbiota. Nature Reviews. Gastroenterology & Hepatology 16 (1):35–56.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.