572
Views
0
CrossRef citations to date
0
Altmetric
Reviews

The potential use of Zymomonas mobilis for the food industry

, , , , , , , , & show all

References

  • Abdel-Rahim, E. A., N. R. Abdel- Rahman, M. H. Alam, and A. R. Ragab. 2005. Effect of some additives on leaveners and dough quality. Egyptian Journal of Agricultural Research 83 (1):301–19. doi: 10.21608/ejar.2005.242772.
  • Adelfo, E., E. María, M. Alfredo, L. Agustín, B. Francisco, and G. Guillermo. 2004. Characterization of bacterial diversity in Pulque, a traditional Mexican alcoholic fermented beverage, as determined by 16S rDNA analysis. FEMS Microbiology Letters 235 (2):273–9. doi: 10.1016/j.femsle.2004.04.045.
  • AïT-Abdelkader, N., A. D. Caro, J. Guzzo, G. P. F. Michel, and J. C. Baratti. 2000. The intracellular sucrase (SacA) of Zymomonas mobilis is not involved in sucrose assimilation. Biotechnology Letters 22 (6):461–7. doi: 10.1023/A:1005604730063.
  • Alcántara-Hernández, R. J., J. A. Rodríguez-Álvarez, C. Valenzuela-Encinas, F. A. Gutiérrez-Miceli, H. Castañón-González, R. Marsch, T. Ayora-Talavera, and L. Dendooven. 2010. The bacterial community in ‘taberna’ a traditional beverage of Southern Mexico. Letters in Applied Microbiology 51 (5):558–63. doi: 10.1111/j.1472-765X.2010.02934.x.
  • Amin, G., E. Eynde, and H. Ver Ac Htert. 1983. Determination of by-products formed during the ethanolic fermentation, using batch and immobilized cell systems of Zymomonas mobilis and Saccharomyces bayanus. European Journal of Applied Microbiology and Biotechnology 18 (1):1–5. doi: 10.1007/BF00508121.
  • Amin, M., S. B. Sumitro, and M. Saptasari. 2016. Bioethanol production from algae Spirogyra hyalina using Zymomonas mobilis. Biofuels 7 (6):621–6. doi: 10.1080/17597269.2016.1168028.
  • Ananthalakshmy, V. K., and P. Gunasekaran. 1999. Isolation and characterization of mutants from levan-producing Zymomonas mobilis. Journal of Bioscience and Bioengineering 87 (2):214–7. doi: 10.1016/S1389-1723(99)89015-X.
  • Ananthalakshmy, V. K., and P. Gunasekaran. 1999. Overproduction of levan in Zymomonas mobilis by using cloned sacB gene. Enzyme and Microbial Technology 25 (1-2):109–15. doi: 10.1016/S0141-0229(99)00018-6.
  • Anwar, M. A., S. Kralj, A. V. Pique, H. Leemhuis, M. J. E. C. van der Maarel, and L. Dijkhuizen. 2010. Inulin and levan synthesis by probiotic Lactobacillus gasseri strains: Characterization of three novel fructansucrase enzymes and their fructan products. Microbiology (Reading, England) 156 (Pt 4):1264–74. doi: 10.1099/mic.0.036616-0.
  • Araújo, L. C. A. D., T. D. C. D. Mendes, B. S. d Santos, V. D. M. S. Filho, G. M. D. S. Lima, and J. M. D. Araújo. 2018. Molecular identification and physiological characterization of Zymomonas mobilis strains from fuel‐ethanol production plants in north‐east Brazil. Letters in Applied Microbiology 67 (1):54–63. doi: 10.1111/lam.12888.
  • Aslankoohi, E., B. Herrera-Malaver, M. N. Rezaei, J. Steensels, C. M. Courtin, and K. J. Verstrepen. 2016. Non-conventional yeast strains increase the aroma complexity of bread. PloS One 11 (10):e0165126. doi: 10.1371/journal.pone.0165126.
  • Bahroudi, S., B. Shabanpour, J. Combie, A. Shabani, and M. Salimi. 2020. Levan exerts health benefit effect through alteration in bifidobacteria population. Iranian Biomedical Journal 24 (1):54–9. doi: 10.29252/ibj.24.1.54.
  • Bai, D. M., S. Z. Li, Z. L. Liu, and Z. F. Cui. 2008. Enhanced L-(+)-lactic acid production by an adapted strain of Rhizopus oryzae using corncob hydrolysate. Applied Biochemistry and Biotechnology 144 (1):79–85. doi: 10.1007/s12010-007-8078-y.
  • Bali, V., P. S. Panesar, M. B. Bera, and R. Panesar. 2015. Fructo-oligosaccharides: Production, purification and potential applications. Critical Reviews in Food Science and Nutrition 55 (11):1475–90. doi: 10.1080/10408398.2012.694084.
  • Bao, Z., S. W. Yang, K. E. Sai-Sai, T. R. Wang, R. Z. Wang, and J. T. Huang. 2018. Effect of prebiotics on glucose and lipid metabolism in patients with type 2 diabetes mellitus. Medical Information 31 (18):132–4.
  • Barcelos, M. C. S., K. A. C. Vespermann, F. M. Pelissari, and G. Molina. 2020. Current status of biotechnological production and applications of microbial exopolysaccharides. Critical Reviews in Food Science and Nutrition 60 (9):1475–95. doi: 10.1080/10408398.2019.1575791.
  • Barrow, K. D., J. G. Collins, D. A. Leight, P. L. Rogers, and R. G. Warr. 1984. Sorbitol production by Zymomonas mobilis. Applied Microbiology & Biotechnology 20 (4):225–32. doi: 10.1007/BF00250630.
  • Bekers, M., M. Grube, L. Vulfa, D. Upite, and A. Danilevich. 2002. Stillage as a source of growth promoting biofactors and a stimulator of levan and extracellular levansucrase synthesis for Zymomonas mobilis. Food Technology & Biotechnology 40 (4):305–10. doi: 10.1106/108201302031115.
  • Bekers, M., J. Laukevics, D. Upite, E. Kaminska, A. Vigants, U. Viesturs, L. Pankova, and A. Danilevics. 2002. Fructooligosaccharide and levan producing activity of Zymomonas mobilis extracellular levansucrase. Process Biochemistry 38 (5):701–6. doi: 10.1016/S0032-9592(02)00189-9.
  • Bersaneti, G. T., N. C. Pan, C. Baldo, and M. Celligoi. 2018. Co-production of Fructooligosaccharides and Levan by Levansucrase from Bacillus subtilis natto with Potential Application in the Food Industry. Applied Biochemistry and Biotechnology 184 (3):838–51. doi: 10.1007/s12010-017-2587-0.
  • Bondar, M., M. M. R. Fonseca, and M. T. Cesário. 2021. Xylonic acid production from xylose by Paraburkholderia sacchari. Biochemical Engineering Journal 170:107982. doi: 10.1016/j.bej.2021.107982.
  • Bourdichon, F., B. Berger, S. Casaregola, C. Farrokh, J. C. Frisvad, and M. L. Gerds. 2012a. A safety assessment of microbial food cultures with history of use in fermented dairy products. Bulletin of IDF 455:2–12.
  • Bourdichon, F., B. Berger, S. Casaregola, C. Farrokh, J. C. Frisvad, and M. L. Gerds. 2012b. Building an inventory of microbial food cultures with a technological role in fermented food products. Bulletin of IDF 455:13–21.
  • Burrage, S. E. J., T. A. Kremer, and J. B. McKinlay. 2019. Cell aggregation and aerobic respiration are important for Zymomonas mobilis ZM4 survival in an aerobic minimal medium. Applied & Environmental Microbiology 85 (10):e00193–e00219. doi: 10.1128/AEM.00193-19.
  • Calazans, G. M. T., C. E. Lopes, R. M. O. C. Lima, and F. d Franc¸a. 1997. Antitumour activities of levans produced by Zymomonas mobilis strains. Biotechnology Letters 19 (1):19–21. doi: 10.1023/A:1018350617120.
  • Cao, C., Q. Hou, W. Hui, L. Kwok, H. Zhang, and W. Zhang. 2019. Assessment of the microbial diversity of Chinese Tianshan tibicos by single molecule, real-time sequencing technology. Food Science and Biotechnology 28 (1):139–45. doi: 10.1007/s10068-018-0460-8.
  • Cao, S. and J. Tan. 1994. Development of high fiber health food-Meitauza residue. Grain and Oil 1:24–26.
  • Carey, V. C, and L. O. Ingram. 1983. Lipid composition of Zymomonas mobilis: Effects of ethanol and glucose. Journal of Bacteriology 154 (3):1291–300. doi: 10.1128/JB.154.3.1291-1300.1983.
  • Carra, S., D. C. Rodrigues, N. M. C. Beraldo, A. B. Folle, M. G. Delagustin, B. C. de Souza, C. Reginatto, T. A. Polidoro, M. M. da Silveira, V. L. Bassani, et al. 2020. High lactobionic acid production by immobilized Zymomonas mobilis cells: A great step for large-scale process. Bioprocess and Biosystems Engineering 43 (7):1265–76. doi: 10.1007/s00449-020-02323-7.
  • Chacón-Vargas, K., J. Torres, M. Giles-Gómez, A. Escalante, and J. G. Gibbons. 2020. Genomic profiling of bacterial and fungal communities and their predictive functionality during pulque fermentation by whole-genome shotgun sequencing. Scientific Reports 10 (1):15115. doi: 10.1038/s41598-020-71864-4.
  • Chan, A., K. Ellepola, T. Truong, P. Balan, H. Koo, and C. J. Seneviratne. 2020. Inhibitory effects of xylitol and sorbitol on Streptococcus mutans and Candida albicans biofilms are repressed by the presence of sucrose. Archives of Oral Biology 119:104886. doi: 10.1016/j.archoralbio.2020.104886.
  • Chaves-Lopez, C., A. Serio, C. D. Grande-Tovar, R. Cuervo-Mulet, J. Delgado-Ospina, and A. Paparella. 2014. Traditional fermented foods and beverages from a microbiological and nutritional perspective: The Colombian heritage. Comprehensive Reviews in Food Science and Food Safety 13 (5):1031–48. doi: 10.1111/1541-4337.12098.
  • Chen, P., P. Zheng, X. Ye, and F. Ji. 2017. Preparation of A. succinogenes immobilized microfiber membrane for repeated production of succinic acid. Enzyme and Microbial Technology 98:34–42. doi: 10.1016/j.enzmictec.2016.12.004.
  • Chiang, C. J., J. Y. Wang, P. T. Chen, and Y. P. Chao. 2009. Enhanced levan production using chitin-binding domain fused levansucrase immobilized on chitin beads. Applied Microbiology and Biotechnology 82 (3):445–51. doi: 10.1007/s00253-008-1772-z.
  • Chong, H. Y., J. H. Kim, J. Y. Kim, S. H. Shin, and H. S. Park. 2006. Genomic approaches for development of succinic acid producing Zymomonas mobilis ZM4. Paper presented at the 15th Korean Genome Organization Conference KOGO 2006 Annual Meeting.
  • Chun, U. H., and P. L. Rogers. 1988. The simultaneous production of sorbitol from fructose and gluconic acid from glucose using an oxidoreductase of Zymomonas mobilis. Applied Microbiology and Biotechnology 29 (1):19–24. doi: 10.1007/BF00258345.
  • Coton, M., J. M. Laplace, Y. Auffray, and E. Coton. 2006. Polyphasic study of Zymomonas mobilis strains revealing the existence of a novel subspecies Z. mobilis subsp. francensis subsp. nov., isolated from French cider. International Journal of Systematic & Evolutionary Microbiology 56 (1):121–25. doi: 10.1099/ijs.0.63732-0.
  • Crittenden, R. G, and H. W. Doelle. 1994. Identification and characterisation of the extracellular sucrases of Zymomonas mobilis UQM 2716 (ATCC 39676). Applied Microbiology and Biotechnology 41 (3):302–8. doi: 10.1007/BF00221223.
  • Dawes, E. A., D. W. Ribbons, and D. A. Rees. 1966. Sucrose utilization by Zymomonas mobilis: Formation of a levan. The Biochemical Journal 98 (3):804–12. 10.1042/bj0980804.
  • Deanda, K., M. Zhang, C. Eddy, and S. Picataggio. 1996. Development of an arabinose-fermenting Zymomonas mobilis strain by metabolic pathway engineering. Applied and Environmental Microbiology 62 (12):4465–70. doi: 10.1128/AEM.62.12.4465-4470.1996.
  • De-Azerêdo, G. A., T. L. M. Stamford, E. L. De Souza, F. F. Veras, E. R. De Almeida, and J. M. de Araújo. 2010. In vivo assessment of possible probiotic properties of Zymomonas mobilis in a Wistar rat model. Electronic Journal of Biotechnology 13 (2):4. doi: 10.2225/vol13-issue2-fulltext-4.
  • De-Vuyst, L., A. Comasio, and S. V. Kerrebroeck. 2021. Sourdough production: Fermentation strategies, microbial ecology, and use of non-flour ingredients. Critical Reviews in Food Science and Nutrition 15:1–33. doi: 10.1080/10408398.2021.1976100.
  • Dewulf, E. M., P. D. Cani, S. P. Claus, S. Fuentes, P. G. B. Puylaert, A. M. Neyrinck, L. B. Bindels, W. M. de Vos, G. R. Gibson, J.-P. Thissen, et al. 2013. Insight into the prebiotic concept: Lessons from an exploratory, double blind intervention study with inulin-type fructans in obese women. Gut 62 (8):1112–21. doi: 10.1136/gutjnl-2012-303304.
  • Dong, H. 2012. Optimization of synthetic medium of xylose-fermenting Zymomonas mobilis and construction of the strain overexpressing recG genes. diss., Tianjin University.
  • Duan, G., B. Wu, H. Qin, W. Wang, Q. Tan, Y. Dai, Y. Qin, F. Tan, G. Hu, and M. He. 2019. Replacing water and nutrients for ethanol production by ARTP derived biogas slurry tolerant Zymomonas mobilis strain. Biotechnology for Biofuels 12 (1):124. doi: 10.1186/s13068-019-1463-2.
  • Einsfeldt, K., I. C. Baptista, J. C. C. V. Pereira, R. E. Bruno, F. V. Mello, I. C. Costa-Amaral, E. S. d Costa, M. C. M. Ribeiro, M. G. P. Land, T. L. M. Alves, et al. 2016. Recombinant L-asparaginase from Zymomonas mobilis: A potential new antileukemic agent produced in Escherichia coli. PloS One 11 (9):e0163203. doi: 10.1371/journal.pone.0163203.
  • Fabiele, W., D. Débora, K. Josiane, D. R. Marcos, R. C. Dalla, C. R. Luis, and S. Juliana. 2018. Development and characterization of light yoghurt elaborated with Bifidobacterium animalis subsp. Lactis Bb-12 and fructooligosaccharides. Ciencia Rural 48 (3):e20170560. doi: 10.1590/0103-8478cr20170560.
  • Fabricio, M. F., M. B. Mann, C. I. Kothe, J. Frazzon, B. Tischer, S. H. Flôres, and M. A. Z. Ayub. 2022. Effect of freeze-dried kombucha culture on microbial composition and assessment of metabolic dynamics during fermentation. Food Microbiology 101:103889. doi: 10.1016/j.fm.2021.103889.
  • Feldmann, S. D., H. Sahm, and G. A. Sprenger. 1992. Pentose metabolism in Zymomonas mobilis wild-type and recombinant strains. Applied Microbiology & Biotechnology 38 (3):354–61. doi: 10.1007/BF00170086.
  • Ferro, L. E., L. N. Crowley, K. Bittinger, E. S. Friedman, J. E. Decker, K. Russel, S. Katz, J. K. Kim, and J. C. Trabulsi. 2022. Effects of prebiotics, probiotics, and synbiotics on the infant gut microbiota and other health outcomes: A systematic review. Critical Reviews in Food Science and Nutrition :1–23. Advance online publication. doi: 10.1080/10408398.2021.2022595.
  • Fuchino, K, and P. Bruheim. 2020. Increased salt tolerance in Zymomonas mobilis strain generated by adaptative evolution. Microbial Cell Factories 19 (1):147. doi: 10.1186/s12934-020-01406-0.
  • Garre Alcaraz, J. A., and A. Garre Alcaraz. 2002. Production of fermented beverages using mixtures of microorganisms, which reduces fermentation time and energy requirements, and produces high alcohol content. WO200270642-A1, filed Mar. 02, 2002, issued Sep. 12, 2022; AU2002238594-A1, filed Mar. 02, 2002, issued September 19, 2002.
  • Golgeri, M., D. B., S. I. Mulla, Z. K. Bagewadi, S. Tyagi, A. Hu, S. Sharma, M. Bilal, R. N. Bharagava, L. F. R. Ferreira, D. M. Gurumurthy, et al. 2022. A systematic review on potential microbial carbohydrases: Current and future perspectives. Critical Reviews in Food Science and Nutrition :1–18. Advance online publication. doi: 10.1080/10408398.2022.2106545.
  • Han, Y. W. 1989. Levan production by Bacillus polymyxa. Journal of Industrial Microbiology 4 (6):447–51. doi: 10.1007/BF01569641.
  • He, M. X., B. Wu, H. Qin, Z. Y. Ruan, F. R. Tan, J. L. Wang, Z. X. Shui, L. C. Dai, Q. L. Zhu, K. Pan, et al. 2014. Zymomonas mobilis: A novel platform for future biorefineries. Biotechnology for Biofuels 7 (1):101. doi: 10.1186/1754-6834-7-101.
  • Hernandez-Lopez, M. J., J. A. Prieto, and F. Randez-Gil. 2003. Osmotolerance and leavening ability in sweet and frozen sweet dough. Comparative analysis between Torulaspora delbrueckii and Saccharomyces cerevisiae baker’s yeast strains. Antonie Van Leeuwenhoek 84 (2):125–34. doi: 10.1023/A:1025413520192.
  • Herrera, C. R. J., V. R. Vieira, T. Benoliel, C. V. G. C. Carneiro, J. L. De Marco, L. M. P. de Moraes, J. R. M. de Almeida, and F. A. G. Torres. 2021. Engineering Zymomonas mobilis for the production of xylonic acid from sugarcane bagasse hydrolysate. Microorganisms 9 (7):1372. 24 doi: 10.3390/microorganisms9071372.
  • Hu, M. M., X. Y. Chen, J. Huang, J. Du, M. Li, and S. H. Yang. 2021. Revitalizing the ethanologenic bacterium Zymomonas mobilis for sugar reduction in high-sugar-content fruits and commercial products. Bioresources and Bioprocessing 8:119.
  • Huang, Z. 2017. Preparing litchi fruit vinegar comprises e.g. pre-treating fresh litchi, adding Zymomonas mobilis and Saccharomyces cerevisiae to fruit pulp, adding rice wine, fermenting, and adding Lactobacillus acidophilus and acid-resistant Acetobacter. CN107365679-A, filed Jul. 11, 2017, issued Nov. 21, 2017.
  • Huang, S. 2018. Furfural tolerant ZM CP4 based on error-PCR whole genome shuffling. diss., Tianjin University.
  • Ichikawa, Y., Y. Kitamoto, N. Kato, and N. Mori. 1989. Preparation of gluconic acid and sorbitol. EP0322723 A2, filed Jan. 01, 1989, issued Jul. 05, 1989.
  • Iftikhar, R., A. Ansari, N. N. Siddiqui, F. Hussain, and A. Aman. 2021. Structural elucidation and cytotoxic analysis of a fructan based biopolymer produced extracellularly by Zymomonas mobilis KIBGE-IB14. Carbohydrate Research 499:108223. doi: 10.1016/j.carres.2020.108223.
  • Inthanavong, L., F. Tian, M. Khodadadi, and S. Karboune. 2013. Properties of Geobacillus stearothermophilus levansucrase as potential biocatalyst for the synthesis of levan and fructooligosaccharides. Biotechnology Progress 29 (6):1405–15. doi: 10.1002/btpr.1788.
  • Jafari, A., Z. Noormohammadi, M. Askari, and E. Daneshzad. 2022. Zinc supplementation and immune factors in adults: A systematic review and meta-analysis of randomized clinical trials. Critical Reviews in Food Science and Nutrition 62 (11):3023–41. doi: 10.1080/10408398.2020.1862048.
  • Jales, S. T. L., J. L. Soares-Sobrinho, L. C. C. Nunes, M. F. Roca, and P. J. Rolim-Neto. 2007. Formulation technology of a probiotic (Zymomonas mobilis) in gelatinous capsules. Latin American Journal of Pharmacy 26 (4):553–7.
  • Jamshidian, M., E. A. Tehrany, M. Imran, M. Jacquot, and S. Desobry. 2010. Poly-lactic acid: Production, applications, nanocomposites, and release studies. Comprehensive Reviews in Food Science and Food Safety 9 (5):552–71. doi: 10.1111/j.1541-4337.2010.00126.x.
  • Jeon, Y. J., C. J. Svenson, E. L. Joachimsthal, and P. L. Rogers. 2002. Kinetic analysis of ethanol production by an acetate-resistant strain of recombinant Zymomonas mobilis. Biotechnology Letters 24 (10):819–24. doi: 10.1023/A:1015546521000.
  • Jeon, Y. J., Z. Xun, P. Su, and P. L. Rogers. 2012. Genome-wide transcriptomic analysis of a flocculent strain of Zymomonas mobilis. Applied Microbiology and Biotechnology 93 (6):2513–8. doi: 10.1007/s00253-012-3948-9.
  • Jia, X., L. Peng, L. Shuang, S. Li, and J. Wen. 2011. D-lactic acid production by a genetically engineered strain Corynebacterium glutamicum. World Journal of Microbiology and Biotechnology 27 (9):2117–24. doi: 10.1007/s11274-011-0675-9.
  • Jiang, K., Z. Su, and Y. Wang. 2011. Construction of metabolic engineering strain of L-lactic acid producing Zymomonas mobilis. Biotechnology Bulletin (6):170–4.
  • Joachimsthal, E., K. D. Haggett, J. H. Jang, and P. L. Rogers. 1998. A mutant of Zymomonas mobilis ZM4 capable of ethanol production from glucose in the presence of high acetate concentrations. Biotechnology Letters 20 (2):137–42. doi: 10.1023/A:1005320306410.
  • Khandelwal, R., P. Srivastava, and V. S. Bisaria. 2022. Expression of Escherichia coli malic enzyme gene in Zymomonas mobilis for production of malic acid. Journal of Biotechnology 351:23–9. doi: 10.1016/j.jbiotec.2022.04.007.
  • Kim, D, and H. Kim. 1991. Continuous production of gluconic acid and sorbitol from Jerusalem artichoke and glucose using an oxidoreductase of Zymomonas mobilis and inulinase. Enzyme and Microbial Technology 13 (11):920–4. doi: 10.1002/bit.260390312.
  • Kim, J. Y., S. H. Shin, H. Y. Chong, K. S. Yang, and J. S. Seo. 2012. New Zymomonas mobilis transformant obtained by introducing gene encoding D-lactate dehydrogenase derived from Leuconostoc, useful for production of lactic acid having high optical purity at high yield in cost-effective manner. KR2012096684-A, filed Feb. 23, 2011, issued Nov. 07, 2013; KR1326583-B1, filed Feb. 23, 2011, issued Aug. 31, 2012.
  • Kim, J. Y., S. H. Shin, H. Y. Chong, K. S. Yang, and J. S. Seo. 2016. Transformant for production of lactic acid of high optical purity and method for producing lactic acid using the same. US9428775. filed Feb. 23, issued August 30, 2016.
  • Kircheva, M., N. Kirchev, and K. Krachanov. 1990. Biosynthesis of levan by Pseudomonas syringae. 2. Influence of some carbon sources. Nauchni Trudove, Vissh Institut po Khranitelna i Vkusova Promishlenost, Plovdiv 35 (1):121–9.
  • Korakli, M., M. Pavlovic, M. G. Ganzle, and R. F. Vogel. 2003. Exopolysaccharide and kestose production by Lactobacillus sanfranciscensis LTH2590. Applied and Environmental Microbiology 69 (4):2073–9. doi: 10.1128/AEM.69.4.2073-2079.2003.
  • Kremer, T. A., B. LaSarre, A. L. Posto, and J. B. McKinlay. 2015. N2 gas is an effective fertilizer for bioethanol production by Zymomonas mobilis. Proceedings of the National Academy of Sciences of the United States of America 112 (7):2222–6. doi: 10.1073/pnas.1420663112.
  • Lee, K. Y., J. M. Park, T. Y. Kim, H. Yun, and S. Y. Lee. 2010. The genome-scale metabolic network analysis of Zymomonas mobilis ZM4 explains physiological features and suggests ethanol and succinic acid production strategies. Microbial Cell Factories 9 (1):94. doi: 10.1186/1475-2859-9-94.
  • Leigh, D., R. K. Scopes, and P. L. Rogers. 1984. A proposed pathway for sorbitol production by Zymomonas mobilis. Applied Microbiology & Biotechnology 20 (6):413–5.
  • Li, Y, and L. X. Liu. 2013. The application of disodium succinate in food. China Condiment 38 (03):109–11.
  • Li, R. X., Shen, W. Yang, Y. F. Du, J. Li, M. Yang, and S. H. 2021. Investigation of the impact of a broad range of temperatures on the physiological and transcriptional profiles of Zymomonas mobilis ZM4 for high-temperature-tolerant recombinant strain development. Biotechnology for Biofuels 14 (1):146. doi: 10.1186/s13068-021-02000-1.
  • Li, Z., K. Song, H. Li, R. Ma, and M. Cui. 2019. Effect of mixed Saccharomyces cerevisiae Y10 and Torulaspora delbrueckii Y22 on dough fermentation for steamed bread making. International Journal of Food Microbiology 303:58–64. doi: 10.1016/j.ijfoodmicro.2019.05.009.
  • Li, C.-H., C.-T. Wang, Y.-J. Lin, H.-Y. Kuo, J.-S. Wu, T.-C. Hong, C.-J. Chang, and H.-T. Wu. 2022. Long-term consumption of the sugar substitute sorbitol alters gut microbiome and induces glucose intolerance in mice. Life Sciences 305:120770. doi: 10.1016/j.lfs.2022.120770.
  • Li, K., J. Xia, Z. I. Lihan, C. Liu, and F. Bai. 2015. Effect of physical and chemical factors on flocculation of Zymomonas mobilis and flocculation mechanism. China Sciencepaper 10 (24):2880–3.
  • Lima, L. J. R., M. H. Almeida, M. J. R. Nout, and M. H. Zwietering. 2011. Theobroma cacao L., "The Food of the Gods": Quality Determinants of Commercial Cocoa Beans, with Particular Reference to the Impact of Fermentation. Critical Reviews in Food Science and Nutrition 51 (8):731–61. doi: 10.1080/10408391003799913.
  • Lindner, P. 1929. Allgemeine Betrachtung über Gärung und Fäulnis und die Anwendung von Gärungsmikroben in der Milchwirtschaft. In Süddeutsche Molk, ed. P. Lindner. 889–91.
  • Lindner, P. 1931. Termobacterium mobile, einmexikanisches Bakterium als neues Einsäuerungsbakterium für Rübenschnitzel. In Z Ver Dsch Zuckerind, ed. P. Lindner. 25–36.
  • Lin, Y., M. Zhang, and B. Chen. 2005. Research progress of ethanol producing Zymomonas mobilis. Journal of Microbiology (3):472–7.
  • Liu, C. 2010. Catalytic production of sorbitol by recombinant Zymomonas mobilis Thesis. East China University of Science and Technology.
  • Liu, Y. F., C. W. Hsieh, Y. S. Chang, and B. S. Wung. 2017. Effect of acetic acid on ethanol production by Zymomonas mobilis mutant strains through continuous adaptation. BMC Biotechnology 17 (1):63. doi: 10.1186/s12896-017-0385-y.
  • Liu, C., J. Lu, L. Lu, Y. Liu, F. Wang, and M. Xiao. 2010. Isolation, structural characterization and immunological activity of an exopolysaccharide produced by Bacillus licheniformis 8-37-0-1. Bioresource Technology 101 (14):5528–33. doi: 10.1016/j.biortech.2010.01.151.
  • Liu, Y., G. I. Neil, M. Julia, Y. P. Zhang, A. N. Daniel, and L. Robert. 2020. Regulated redirection of central carbon flux enhances anaerobic production of bioproducts in Zymomonas mobilis. Metabolic Engineering 61:261–74. doi: 10.1016/j.ymben.2020.06.005.
  • Liu, H. W., X. L. Xu, M. F. Shi, and Y. Y. Zhang. 2012. Effects of culture media, carbon and nitrogen source on sporulation of Actinomucor elegans. Food Science & Technology 37 (1):17–22.
  • Long, D., L. Luo, H. Wu, and J. Wan. 2018. The Research progress on microbial agents applied in enhancing aroma enhancement of tea products. Food and Fermentation Science & Technology 54 (5):80–5. doi: 10.3969/j.issn.1674-506X.2018.05-018.
  • Lorenzetti, M. F. S., M. R. Moro, and C. H. García-Cruz. 2015. Alginate/PVA beads for levan production by Zymomonas mobilis. Journal of Food Process Engineering 38 (1):31–6. doi: 10.1111/jfpe.12123.
  • Lüers, P. 1932. Über Möglichkeiten der Herstellung neuerer Getränke im Brauereibetrieb. In Wochenschr Brau, ed. P. Lüers, 73–9.
  • Lyness, E. W, and H. W. Doelle. 1983. Levansucrase from Zymomonas mobilis. Biotechnology Letters 5 (5):345–50. doi: 10.1007/BF01141136.
  • Ma, Y., H. Dong, S. Zou, J. Hong, and M. Zhang. 2012. Comparison of glucose/xylose co-fermentation by recombinant Zymomonas mobilis under different genetic and environmental conditions. Biotechnology Letters 34 (7):1297–304. doi: 10.1007/s10529-012-0897-4.
  • Man, Y., T. Xu, B. Adhikari, C. Zhou, Y. Wang, and B. Wang. 2022. Iron supplementation and iron-fortified foods: A review. Critical Reviews in Food Science and Nutrition 62 (16):4504–25. doi: 10.1080/10408398.2021.1876623.
  • Mao, S., Y. Liu, Y. Hou, X. Ma, J. Yang, H. Han, J. Wu, L. Jia, H. Qin, and F. Lu. 2018. Efficient production of sugar-derived aldonic acids by Pseudomonas fragi TCCC11892. RSC Advances 8 (70):39897–901. doi: 10.1039/c8ra07556e.
  • Marsh, A. J., O. O'Sullivan, C. Hill, R. P. Ross, and P. D. Cotter. 2013. Sequence‐based analysis of the microbial composition of water kefir from multiple sources. FEMS Microbiology Letters 348 (1):79–85. doi: 10.1111/1574-6968.12248.
  • Mcghee, J. E., Julian, G. S. De Troy, R. W. Detroy, and R. J. Bothast. 1982. Ethanol production by immobilized Saccharomyces cerevisiae, Saccharomyces uvarum, and Zymomonas mobilis. Biotechnology and Bioengineering 24 (5):1155–63. doi: 10.1002/bit.260240512.
  • Melo, I. R., M. F. Pimentel, C. E. Lopes, and G. Calazans. 2007. Application of fractional factorial design to levan production by Zymomonas mobilis. Brazilian Journal of Microbiology 38 (1):45–51. doi: 10.1590/S1517-83822007000100010.
  • Misawa, N., S. Yamano, and H. Ikenaga. 1991. Production of beta-carotene in Zymomonas mobilis and Agrobacterium tumefaciens by introduction of the biosynthesis genes from Erwinia uredovora. Applied and Environmental Microbiology 57 (6):1847–9. doi: 10.1128/AEM.57.6.1847-1849.1991.
  • Miyamoto, T., S. Iwamura, H. Komatsu, T. Yoneya, K. Kataoka, and T. Nakae. 1986. Studies on production of alcohol fermented beverage using lactose hydrolysed milk. Japanese Journal of Dairy & Food Science 35 (4):A143–A150.
  • Mohagheghi, A., N. Dowe, D. Schell, Y. C. Chou, C. Eddy, and M. Zhang. 2004. Performance of a newly developed integrant of Zymomonas mobilis for ethanol production on corn stover hydrolysate. Biotechnology Letters 26 (4):321–5. doi: 10.1023/B:BILE.0000015451.96737.96.
  • Mohagheghi, A., K. Evans, Y. C. Chou, and M. Zhang. 2002. Cofermentation of glucose, xylose, and arabinose by genomic DNA-integrated xylose/arabinose fermenting strain of Zymomonas mobilis AX101. Applied Biochemistry and Biotechnology 98-100 (1-9):885–98. doi: 10.1385/ABAB:98-100:1-9:885.
  • Mohagheghi, A., J. G. Linger, S. Yang, H. Smith, N. Dowe, M. Zhang, and P. T. Pienkos. 2015. Improving a recombinant Zymomonas mobilis strain 8b through continuous adaptation on dilute acid pretreated corn stover hydrolysate. Biotechnology for Biofuels 8 (1):55. doi: 10.1186/s13068-015-0233-z.
  • Mohamad, N., M. Mazlan, and I. Tawakkal. 2021. Characterization of active polybutylene succinate films filled essential oils for food packaging application. Journal of Polymers & the Environment 30:1–12. doi: 10.1007/s10924-021-02198-z.
  • Mohammad, N. R., K. J. Verstrepen, and C. M. Courtin. 2015. Metabolite analysis allows insight into the differences in functionality of 25 Saccharomyces cerevisiae strains in bread dough fermentation. Cereal Chemistry Journal 92 (6):588–97. doi: 10.1094/CCHEM-04-15-0061-R.
  • Moon, S. K., Y. J. Wee, and G. W. Choi. 2012. A novel lactic acid bacterium for the production of high purity L-lactic acid, Lactobacillus paracasei subsp paracasei CHB2121. Journal of Bioscience and Bioengineering 114 (2):155–9. doi: 10.1016/j.jbiosc.2012.03.016.
  • Moroti, C., L. S. Magri, R. De, D. Cavallini, and K. Sivieri. 2012. Effect of the consumption of a new symbiotic shake on glycemia and cholesterol levels in elderly people with type 2 diabetes mellitus. Lipids in Health & Disease 11 (1):585–96. doi: 10.1186/1476-511X-11-29.
  • Musatti, A., C. Cappa, C. Mapelli, C. Alamprese, and M. Rollini. 2020. Zymomonas mobilis in bread dough: Characterization of dough leavening performance in presence of sucrose. Foods 9 (1):89. doi: 10.3390/foods9010089.
  • Musatti, A., C. Mapelli, R. Foschino, C. Picozzi, and M. Rollini. 2016. Unconventional bacterial association for dough leavening. International Journal of Food Microbiology 237:28–34. doi: 10.1016/j.ijfoodmicro.2016.08.011.
  • Musatti, A., C. Mapelli, M. Rollini, R. Foschino, and C. Picozzi. 2018. Can Zymomonas mobilis substitute Saccharomyces cerevisiae in cereal dough leavening? Foods 7 (4):61. doi: 10.3390/foods7040061.
  • Musatti, A., M. Rollini, C. Sambusiti, and M. Manzoni. 2015. Zymomonas mobilis: Biomass production and use as a dough leavening agent. Annals of Microbiology 65 (3):1583–9. doi: 10.1007/s13213-014-0997-6.
  • Nanou, K., T. Roukas, and E. Papadakis. 2012. Improved production of carotenes from synthetic medium by Blakeslea trispora in a bubble column reactor. Biochemical Engineering Journal 67:203–7. doi: 10.1016/j.bej.2012.06.018.
  • Nissen, L., M. Rollini, C. Picozzi, A. Musatti, R. Foschino, and A. Gianotti. 2020. Yeast-free doughs by Zymomonas mobilis: Evaluation of technological and fermentation performances by using a metabolomic approach. Microorganisms 8 (6):792. doi: 10.3390/microorganisms8060792.
  • Nwachukwu, I., N. V. I. Ibekwe, and B. N. Anyanwu. 2006. Investigation of some physicochemical and microbial succession parameters of palm wine. Journal of Food Technology 4 (4):308–12.
  • O”Toole, D. K. 1999. Characteristics and use of okara, the soybean residue from soy milk production–a review. Journal of Agricultural and Food Chemistry 47 (2):363–71. doi: 10.1021/jf980754l.
  • Obire, O. 2005. Activity of Zymomonas species in palm-sap obtained from three areas in Edo State. Nigeria. Journal of Applied Sciences and Environmental Management 9 (1):25–30.
  • Oda, Y, and K. Tonomura. 1994. Dough‐leavening by Zymomonas mobilis and Its Application to Breadmaking. Journal of Food Science 59 (1):171–4. doi: 10.1111/j.1365-2621.1994.tb06926.x.
  • Okafor, N. 1975. Microbiology of Nigerian palm wine with particular reference to bacteria. Journal of Applied Bacteriology 38 (2):81–8. doi: 10.1111/j.1365-2672.1975.tb00507.x.
  • Oliveira, M., S. Rui, J. O. B. Buzato, and M. Celligoi. 2007. Study of levan production by Zymomonas mobilis using regional low-cost carbohydrate sources. Biochemical Engineering Journal 37 (2):177–83. doi: 10.1016/j.bej.2007.04.009.
  • Öner, E., L. Hernández, and J. Combie. 2016. Review of Levan polysaccharide: From a century of past experiences to future prospects. Biotechnology Advances 34 (5):827–44. doi: 10.1016/j.biotechadv.2016.05.002.
  • Ozturk, G, and G. M. Young. 2017. Food evolution: The impact of society and science on the fermentation of cocoa beans. Comprehensive Reviews in Food Science and Food Safety 16 (3):431–55. doi: 10.1111/1541-4337.12264.
  • Palamae, S., W. Choorit, T. Chatsungnoen, and Y. Chisti. 2020. Simultaneous nitrogen fixation and ethanol production by Zymomonas mobilis. Journal of Biotechnology 314-315:41–52. doi: 10.1016/j.jbiotec.2020.03.016.
  • Patel, M. A., M. S. Ou, R. Harbrucker, H. C. Aldrich, M. L. Buszko, L. O. Ingram, and K. T. Shanmugam. 2006. Isolation and characterization of acid-tolerant, thermophilic bacteria for effective fermentation of biomass-derived sugars to lactic acid. Applied and Environmental Microbiology 72 (5):3228–35. doi: 10.1128/AEM.72.5.3228-3235.2006.
  • Patel, S. H., J. P. Tan, R. A. Börner, S. J. Zhang, S. Priour, A. Lima, C. Ngom-Bru, P. D. Cotter, and S. Duboux. 2022. A temporal view of the water kefir microbiota and flavour attributes. Innovative Food Science & Emerging Technologies 80:103084. doi: 10.1016/j.ifset.2022.103084.
  • Pedruzzi, I., E. A. da Silva, and A. E. Rodrigues. 2011. Production of lactobionic acid and sorbitol from lactose/fructose substrate using GFOR/GL enzymes from Zymomonas mobilis cells: A kinetic study. Enzyme and Microbial Technology 49 (2):183–91. doi: 10.1016/j.enzmictec.2011.04.017.
  • Peng, M., Z. Tabashsum, M. Anderson, A. Truong, A. K. Houser, J. Padilla, A. Akmel, J. Bhatti, S. O. Rahaman, and D. Biswas. 2020. Effectiveness of probiotics, prebiotics, and prebiotic-like components in common functional foods. Comprehensive Reviews in Food Science and Food Safety 19 (4):1908–33. doi: 10.1111/1541-4337.12565.
  • Peng, X., R. Wang, X. L. Xu, and H. Fan. 2014. DVS meitauza starter preparation by spray drying process. China Brewing 33 (9):34–37.
  • Pentjuss, A., I. Odzina, A. Kostromins, D. A. Fell, E. Stalidzans, and U. Kalnenieks. 2013. Biotechnological potential of respiring Zymomonas mobilis: A stoichiometric analysis of its central metabolism. Journal of Biotechnology 165 (1):1–10. doi: 10.1016/j.jbiotec.2013.02.014.
  • Peretti, F. A., M. M. Silveira, and M. Zeni. 2009. Use of electrodialysis technique for the separation of lactobionic acid produced by Zymomonas mobilis. Desalination 245 (1-3):626–30. doi: 10.1016/j.desal.2009.02.029.
  • Picozzi, C., E. Clagnan, A. Musatti, M. Rollini, and L. Brusetti. 2022. Characterization of Two Zymomonas mobilis Wild Strains and Analysis of Populations Dynamics during Their Leavening of Bread-like Doughs. Foods 11 (18):2768. doi: 10.3390/foods11182768.
  • Pogorzelski, E., W. Adamiec, and M. Koch. 2001. Tests for use bacterium Zymomonas mobilis for meads production. Przemysl Fermentacyjny I Owocowo-Warzywny (Poland) 45 (4):15–7. doi: 10.3109/07388559309069198.
  • Porras-Domínguez, J. R., Á. Ávila-Fernández, M. E. Rodríguez-Alegría, A. Miranda-Molina, A. Escalante, R. González-Cervantes, C. Olvera, and A. López Munguía. 2014. Levan-type FOS production using a Bacillus licheniformis endolevanase. Process Biochemistry 49 (5):783–90. doi: 10.1016/j.procbio.2014.02.005.
  • Preziosi, L., G. Michel, and J. Baratti. 1990. Sucrose metabolism in Zymomonas mobilis: Production and localization of sucrase and levansucrase activities. Canadian Journal of Microbiology 36 (3):159–63. doi: 10.1139/m90-028.
  • Queiroz, S, and C. Garcia. 2017. Zymomonas mobilis immobilized on loofa sponge and sugarcane bagasse for levan and ethanol production using repeated batch fermentation. Brazilian Journal of Chemical Engineering 34 (2):407–18. doi: 10.1590/0104-6632.20170342s20150350.
  • Queiroz, S., V. E. Jesus, M. Carmen, and G. Humberto. 2017. Zymomonas mobilis immobilized on loofa sponge: Levan and ethanol production in semi-continuous fermentation. Acta Entiarum Technology 39 (2):135–41. doi: 10.4025/actascitechnol.v39i2.27625.
  • Rajeshkumar, G., S. Arvindh Seshadri, G. L. Devnani, M. R. Sanjay, S. Siengchin, J. Prakash Maran, N. A. Al-Dhabi, P. Karuppiah, V. A. Mariadhas, N. Sivarajasekar, et al. 2021. Environment friendly, renewable and sustainable poly lactic acid (PLA) based natural fiber reinforced composites-A comprehensive review. Journal of Cleaner Production 310:127483. doi: 10.1016/j.jclepro.2021.127483.
  • Rehr, B., C. Wilhelm, and H. Sahm. 1991. Production of sorbitol and gluconic acid by permeabilized cells of Zymomonas mobilis. Applied Microbiology and Biotechnology 35 (2):144–8. doi: 10.1007/BF00184677.
  • Rogers, P. L., Y. J. Jeon, K. J. Lee, and H. G. Lawford. 2007. Zymomonas mobilis for fuel ethanol and higher value products. Advances in Biochemical Engineering/Biotechnology 108:263–88. doi: 10.1007/10_2007_060.
  • Rollini, M., E. Casiraghi, M. A. Pagani, and M. Manzoni. 2007. Technological performances of commercial yeast strains (Saccharomyces cerevisiae) in different complex dough formulations. European Food Research and Technology 226 (1-2):19–24. doi: 10.1007/s00217-006-0503-x.
  • Ruhrmann, J., G. A. Sprenger, and R. Krämer. 1994. Mechanism of alanine excretion in recombinant strains of Zymomonas mobilis. Biochimica et Biophysica Acta 1196 (1):14–20. doi: 10.1016/0005-2736(94)90289-5.
  • Rutkis, R., U. Kalnenieks, E. Stalidzans, and D. Fell. 2013. Kinetic modelling of the Zymomonas mobilis Entner-Doudoroff pathway: Insights into control and functionality. Microbiology (Reading, England) 159 (Pt 12):2674–89. doi: 10.1099/mic.0.071340-0.
  • Sahm, H., S. Bringer-Meyer, and G. A. Sprenger. 2006. The Genus Zymomonas. In The prokaryotes, eds. M. Dworkin, S. Falkow, E. Rosenberg, KH. Schleifer, and E. Stackebrandt, 201–21. New York, NY: Springer. doi: 10.1007/0-387-30745-1_10.
  • Samappito, J., P. Klanrit, S. Thanonkeo, M. Yamada, and P. Thanonkeo. 2019. Isolation of a High Potential Thermotolerant Strain of Zymomonas mobilis for Ethanol Production at High Temperature Using Ethyl Methane Sulfonate Mutagenesis. Chiang Mai Journal of Science 46 (2):207–18.
  • Santos-Moriano, P., L. Fernandez-Arrojo, A. Poveda, J. Jimenez-Barbero, A. O. Ballesteros, and F. J. Plou. 2015. Levan versus fructooligosaccharide synthesis using the levansucrase from Zymomonas mobilis: Effect of reaction conditions. Journal of Molecular Catalysis B: Enzymatic 119:18–25. doi: 10.1016/j.molcatb.2015.05.011.
  • Satory, M., M. Fürlinger, D. Haltrich, K. D. Kulbe, F. Pittner, and B. Nidetzky. 1997. Continuous enzymatic production of lactobionic acid using glucose-fructose oxidoreductase in an ultrafiltration membrane reactor. Biotechnology Letters 19 (12):1205–8. doi: 10.1023/A:1018485804167.
  • Senthilkumar, V., N. Rameshkumar, S. Busby, and P. Gunasekaran. 2004. Disruption of the Zymomonas mobilis extracellular sucrase gene (sacC) improves levan production. Journal of Applied Microbiology 96 (4):671–6. doi: 10.1111/j.1365-2672.2003.02169.x.
  • Seo, J. S., H. Y. Chong, J. H. Kim, and J. Y. Kim. 2007. Method for mass production of primary metabolites, strain for mass production of primary metabolites, and method for preparation thereof. WO2007094646. filed Feb. 16, 2006, issued August 23, 2007.
  • Shapiro, F, and N. Silanikove. 2010. Rapid and accurate determination of D- and L-lactate, lactose and galactose by enzymatic reactions coupled to formation of a fluorochromophore: Applications in food quality control. Food Chemistry 119 (2):829–33. doi: 10.1016/j.foodchem.2009.07.029.
  • Shen, W., J. Zhang, B. Geng, M. Qiu, M. Hu, Q. Yang, W. Bao, Y. Xiao, Y. Zheng, W. Peng, et al. 2019. Establishment and application of a CRISPR-Cas12a assisted genome-editing system in Zymomonas mobilis. Microbial Cell Factories 18 (1):162. doi: 10.1186/s12934-019-1219-5.
  • Shui, Z.-X., H. Qin, B. Wu, Z-y Ruan, L-s Wang, F.-R. Tan, J.-L. Wang, X.-Y. Tang, L.-C. Dai, G.-Q. Hu, et al. 2015. Adaptive laboratory evolution of ethanologenic Zymomonas mobilis strain tolerant to furfural and acetic acid inhibitors. Applied Microbiology and Biotechnology 99 (13):5739–48. doi: 10.1007/s00253-015-6616-z.
  • Shui, Z. 2015. Construction and application of succinic acid anabolic pathway of Zymomonas mobilis. diss. Chinese Academy of Agricultural Sciences.
  • Shukla, R, and A. Goyal. 2013. Elucidation of structure and biocompatibility of levan from Leuconostoc mesenteroides NRRL B-1149. Current Trends in Biotechnology and Pharmacy 7 (2):635–43.
  • Silbir, S., S. Dagbagli, S. Yegin, T. Baysal, and Y. Goksungur. 2014. Levan production by Zymomonas mobilis in batch and continuous fermentation systems. Carbohydrate Polymers 99:454–61. doi: 10.1016/j.carbpol.2013.08.031.
  • Silva-Martinez, M., D. Haltrich, S. Novalic, K. D. Kulbe, and B. Nidetzky. 1998. Simultaneous enzymatic synthesis of gluconic acid and sorbitol. Applied Biochemistry and Biotechnology 70-72 (1):863–8. doi: 10.1007/BF02920196.
  • Silveira, M. M., E. Wisbeck, C. Lemmel, G. Erzinger, J. P. da Costa, M. Bertasso, and R. Jonas. 1999. Bioconversion of glucose and fructose to sorbitol and gluconic acid by untreated cells of Zymomonas mobilis. Journal of Biotechnology 75 (2-3):99–103. doi: 10.1016/S0168-1656(99)00149-2.
  • Song, K. B., J. W. Seo, M. G. Kim, and S. K. Rhee. 1998. Levansucrase of Rahnella aquatilis ATCC33071: Gene cloning, expression, and levan formation. Annals of the New York Academy of Sciences 864:506–11. doi: 10.1111/j.1749-6632.1998.tb10369.x.
  • Sootsuwan, K., P. Thanonkeo, N. Keeratirakha, S. Thanonkeo, P. Jaisil, and M. Yamada. 2013. Sorbitol required for cell growth and ethanol production by Zymomonas mobilis under heat, ethanol, and osmotic stresses. Biotechnology for Biofuels 6 (1):180. doi: 10.1186/1754-6834-6-180.
  • Sprenger, G. A. 1996. Carbohydrate metabolism in Zymomonas mobilis: A catabolic highway with some scenic routes. FEMS Microbiology Letters 145 (3):301–7. doi: 10.1111/j.1574-6968.1996.tb08593.x.
  • Strazdina, I., E. Balodite, Z. Lasa, R. Rutkis, N. Galinina, and U. Kalnenieks. 2018. Aerobic catabolism and respiratory lactate bypass in Ndh-negative Zymomonas mobilis. Metabolic Engineering Communications 7:e00081. doi: 10.1016/j.mec.2018.e00081.
  • Swings, J, and J. D. Ley. 1977. The biology of Zymomonas. Bacteriological Reviews 41 (1):1–46. doi: 10.1128/br.41.1.1-46.1977.
  • Takeshita, M. 1973. Translucent colony form of the gram-negative, levan-producing bacterium, Aerobacter levanicum. Journal of Bacteriology 116 (1):503–6. doi: 10.1128/JB.116.1.503-506.1973.
  • Tallyne de Aguiar Silva, A., I. D. Lima Cavalcanti, M. Ayanny de Lima Fernandes, C. Gisele de Oliveira Coimbra, and G. Manoella de Souza Lima. 2020. Effect of Zymomonas mobilis probiotic on cholesterol and its lipoprotein fractions and the intestinal regulation. Clinical Nutrition (Edinburgh, Scotland) 39 (12):3750–5. doi: 10.1016/j.clnu.2020.04.002.
  • Tan, F. R., L. C. Dai, B. Wu, H. Qin, Z. X. Shui, J. L. Wang, Q. Zhu, Q. Hu, Z. Ruan, and M. X. He. 2015. Improving furfural tolerance of Zymomonas mobilis by rewiring a sigma factor RpoD protein. Applied Microbiology and Biotechnology 99 (12):5363–71. doi: 10.1007/s00253-015-6577-2.
  • Tan, L., C. Tan, N. K. J. Ng, Y. Tan, P. Conway, and S. C. J. Loo. 2022. Potential probiotic strains from milk and water kefir grains in Singapore-use for defense against enteric bacterial pathogens. Frontiers in Microbiology 13 (13):857720. 10.3389/fmicb.2022.857720.
  • Tan, F., B. Wu, L. Dai, H. Qin, Z. Shui, J. Wang, Q. Zhu, G. Hu, and M. He. 2016. Using global transcription machinery engineering (gTME) to improve ethanol tolerance of Zymomonas mobilis. Microbial Cell Factories 15 (1):4. doi: 10.1186/s12934-015-0398-y.
  • Taştan, Ö., G. Sözgen, T. Baysal, and B. K. Türköz. 2019. Production of prebiotic 6-kestose using Zymomonas mobilis levansucrase in carob molasses and its effect on 5-HMF levels during storage. Food Chemistry 297 (1):124897. doi: 10.1016/j.foodchem.2019.05.171.
  • Tay, A, and S. T. Yang. 2002. Production of L(+)-lactic acid from glucose and starch by immobilized cells of Rhizopus oryzae in a rotating fibrous bed bioreactor. Biotechnology and Bioengineering 80 (1):1–12. doi: 10.1002/bit.10340.
  • Trichez, D., C. V. G. C. Carneiro, M. Braga, J, and R. M. Almeida. 2022. Recent progress in the microbial production of xylonic acid. World Journal of Microbiology & Biotechnology 38 (7):127. doi: 10.1007/s11274-022-03313-5.
  • Ua-Arak, T., F. Jakob, and R. Vogel. 2017. Influence of levan-producing acetic acid bacteria on buckwheat-sourdough breads. Food Microbiology 65:95–104. doi: 10.1016/j.fm.2017.02.002.
  • Uhlenbusch, I., H. Sahm, and G. A. Sprenger. 1991. Expression of an L-alanine dehydrogenase gene in Zymomonas mobilis and excretion of L-alanine. Applied and Environmental Microbiology 57 (5):1360–6. doi: 10.1128/AEM.57.5.1360-1366.1991.
  • Vigants, A., D. Upite, R. Scherbaka, J. Lukjanenko, and R. Ionina. 2013. An influence of ethanol and temperature on products formation by different preparations of Zymomonas mobilis extracellular levansucrase. Folia Microbiologica 58 (1):75–80. doi: 10.1007/s12223-012-0185-7.
  • Vignoli, J. A., M. L. Cazetta, S. S. Rui, and M. A. P. C. Celligoi. 2010. Influence of high osmotic pressure on sorbitol production by Zymomonas mobilis. Brazilian Archives of Biology and Technology 53 (5):1169–75. doi: 10.1590/S1516-89132010000500022.
  • Vignoli, J. A., M. Celligoi, and R. Silva. 2006. Development of a statistical model for sorbitol production by free and immobilized Zymomonas mobilis in loofa sponge Luffa cylindrica. Process Biochemistry 41 (1):240–3. doi: 10.1016/j.procbio.2005.06.017.
  • Viikari, L. 1984. Formation of levan and sorbitol from sucrose by Zymomonas mobilis. Applied Microbiology and Biotechnology 19 (4):252–5. doi: 10.1007/BF00251846.
  • Wang, L., Z. Bo, L. Bo, C. Yang, Y. Bo, Q. Li, C. Ma, X. Ping, and Y. Ma. 2010. Efficient production of L-lactic acid from cassava powder by Lactobacillus rhamnosus. Bioresource Technology 101 (20):7895–901. doi: 10.1016/j.biortech.2010.05.018.
  • Wang, H., S. Cao, W. T. Wang, K. T. Wang, and X. Jia. 2016. Very high gravity ethanol and fatty acid production of Zymomonas mobilis without amino acid and vitamin. Journal of Industrial Microbiology & Biotechnology 43 (6):861–71. doi: 10.1007/s10295-016-1761-7.
  • Wang, X., Q. He, Y. Yang, J. Wang, K. Haning, Y. Hu, B. Wu, M. He, Y. Zhang, J. Bao, et al. 2018. Advances and Prospects in Metabolic Engineering of Zymomonas mobilis. Metabolic Engineering 50:57–73. doi: 10.1016/j.ymben.2018.04.001.
  • Wang, Q., W. Wei, and X. Zhao. 2004. Market analysis for bioconversion of succinic acid and its derivatives. Chemical Industry & Engineering Progress (07):794–8.
  • Wang, W., B. Wu, H. Qin, P. Liu, Y. Qin, G. Duan, G. Hu, and M. He. 2019. Genome shuffling enhances stress tolerance of Zymomonas mobilis to two inhibitors. Biotechnology for Biofuels 12:288. doi: 10.1186/s13068-019-1631-4.
  • Wang, J.-L., B. Wu, H. Qin, Y. You, S. Liu, Z.-X. Shui, F.-R. Tan, Y.-W. Wang, Q.-L. Zhu, Y.-B. Li, et al. 2016. Engineered Zymomonas mobilis for salt tolerance using EZ-Tn5-based transposon insertion mutagenesis system. Microbial Cell Factories 15 (1):101. doi: 10.1186/s12934-016-0503-x.
  • Wang, Y., L. Yan, X. Pei, Y. Lei, and Y. Feng. 2007. Genome-shuffling improved acid tolerance and L-lactic acid volumetric productivity in Lactobacillus rhamnosus. Journal of Biotechnology 129 (3):510–5. doi: 10.1016/j.jbiotec.2007.01.011.
  • Wang, Y. 2008. Development of acetic-acid tolerant Zymomonas mobilis strains through adaptation. diss., Georgia Institute of Technology.
  • Widjaja, T., A. Altway, H. Ni’Mah, N. Tedji, and U. Rofiqah. 2015. Technique of ethanol food grade production with batch distillation and dehydration using starch-based adsorbent. AIP Conf. Proc. 1699:030010-1–030010-8. doi: 10.1063/1.4938295.
  • Wu, B., H. Qin, Y. Yang, G. Duan, S. Yang, F. Xin, C. Zhao, H. Shao, Y. Wang, Q. Zhu, et al. 2019. Engineered Zymomonas mobilis tolerant to acetic acid and low pH via multiplex atmospheric and room temperature plasma mutagenesis. Biotechnology for Biofuels 12 (1):10. doi: 10.1186/s13068-018-1348-9.
  • Xu, X, and Y. Li. 2011. Mixed fermentation of meitauza by Actinomucor elegans and Zymomonas mobilis. Food Science 32 (11):103–6.
  • Yan, Z., J. Zhang, and J. Bao. 2021. Increasing cellulosic ethanol production by enhancing phenolic tolerance of Zymomonas mobilis in adaptive evolution. Bioresource Technology 329(:124926. doi: 10.1016/j.biortech.2021.124926.
  • Yanase, H., M. Iwata, K. Kita, N. Kato, and K. Tonomura. 1995. Purification, crystallization, and characterization of the extracellular invertase from Zymomonas mobilis. Journal of Fermentation and Bioengineering 79 (4):367–9. doi: 10.1016/0922-338X(95)93997-X.
  • Yanase, H., T. Kotani, M. Yasuda, A. Matsuzawa, and K. Tonomura. 1991. Metabolism of galactose in Zymomonas mobilis. Applied Microbiology and Biotechnology 35 (3):364–8. doi: 10.1007/BF00172727.
  • Yanase, H., H. Miyawaki, M. Sakurai, A. Kawakami, M. Matsumoto, K. Haga, M. Kojima, and K. Okamoto. 2012. Ethanol production from wood hydrolysate using genetically engineered Zymomonas mobilis. Applied Microbiology and Biotechnology 94 (6):1667–78. doi: 10.1007/s00253-012-4094-0.
  • Yang, S. H., Q. Fei, Y. Zhang, L. M. Contreras, S. M. Utturkar, S. D. Brown, M. E. Himmel, and M. Zhang. 2016. Zymomonas mobilis as a model system for production of biofuels and biochemicals. Microbial Biotechnology 9 (6):699–717. doi: 10.1111/1751-7915.12408.
  • Yang, Y., B. Geng, H. Song, Q. He, M. He, J. Bao, F. Bai, and S. Yang. 2021. Progress and perspectives on developing Zymomonas mobilis as a chassis cell. Synthetic Biology 2 (1):59–90. doi: 10.12211/2096-8280.2020-071.
  • Yang, S., M. Hu, X. Chen, and Y. Sun. 2019. Converting high-sugar product into alcoholic drink useful for low-sugar or sugar-free product containing ethanol comprises e.g. culturing Zymomonas mobilis strain in seed culture medium until exponential growth period and transferring. CN109666555-A, filed Feb. 20, issued Apr. 23, 2019.
  • Yang, S., A. Mohagheghi, M. A. Franden, Y. C. Chou, X. Chen, N. Dowe, E. Michael, and M. Zhang. 2016. Metabolic engineering of Zymomonas mobilis for 2,3-butanediol production from lignocellulosic biomass sugars. Biotechnology for Biofuels 9 (1):189. doi: 10.1186/s13068-016-0606-y.
  • Yang, S., T. J. Tschaplinski, N. L. Engle, S. L. Carroll, S. L. Martin, B. H. Davison, A. V. Palumbo, M. Rodriguez, and S. D. Brown. 2009. Transcriptomic and metabolomic profiling of Zymomonas mobilis during aerobic and anaerobic fermentations. BMC Genomics 10(:34–16. doi: 10.1186/1471-2164-10-34.
  • Yang, S., J. M. Vera, J. Grass, G. Savvakis, O. V. Moskvin, Y. Yang, S. J. McIlwain, Y. Lyu, I. Zinonos, A. S. Hebert, et al. 2018. Complete genome sequence and the expression pattern of plasmids of the model ethanologen Zymomonas mobilis ZM4 and its xylose-utilizing derivatives 8b and 2032. Biotechnology for Biofuels 11 (1):125. doi: 10.1186/s13068-018-1116-x.
  • Yang, Q., M. Wu, Z. X. Dai, F. X. Xin, J. Zhou, W. L. Dong, J. F. Ma, M. Jiang, and W. M. Zhang. 2020. Comprehensive investigation of succinic acid production by Actinobacillus succinogenes: A promising native succinic acid producer. Biofuels, Bioproducts and Biorefining 14 (5):950–64. doi: 10.1002/bbb.2058.
  • Yang, Q., Y. Yang, Y. Tang, X. Wang, Y. Chen, W. Shen, Y. Zhan, J. Gao, B. Wu, M. He, et al. 2020. Development and characterization of acidic-pH-tolerant mutants of Zymomonas mobilis through adaptation and next-generation sequencing-based genome resequencing and RNA-Seq. Biotechnology for Biofuels 13:144. doi: 10.1186/s13068-020-01781-1.
  • Yoshida, Y., R. Suzuki, and Y. Yagi. 1990. Production of levan by a Zymomonas sp. Journal of Fermentation and Bioengineering 70 (4):269–71. doi: 10.1016/0922-338X(90)90061-Z.
  • Yu, P. 2010. D-lactic acid production of high-yeild strains of breeding. Chinese Food Additives 29 (4):251–5.
  • Yu, Q. 2020. Engineering β-carotene producers of Escherichia coli using gene elements from Zymomonas mobilis. diss., Chengdu University.
  • Zachariou, M, and R. K. Scopes. 1986. Glucose-fructose oxidoreductase, a new enzyme isolated from Zymomonas mobilis that is responsible for sorbitol production. Journal of Bacteriology 167 (3):863–9. doi: 10.1128/jb.167.3.863-869.1986.
  • Zhang, X., G. Chen, and W. Liu. 2009. Reduction of xylose to xylitol catalyzed by glucose–fructose oxidoreductase from Zymomonas mobilis. FEMS Microbiology Letters 293 (2):214–9. doi: 10.1111/j.1574-6968.2009.01529.x.
  • Zhang, M., C. Eddy, K. Deanda, M. Finkelstein, and S. Picataggio. 1995. Metabolic engineering of a pentose metabolism pathway in ethanologenic Zymomonas mobilis. Science (New York, N.Y.) 267 (5195):240–3. doi: 10.1126/science.267.5195.240.
  • Zhang, K., H. Shao, Q. Cao, M. X. He, B. Wu, and H. Feng. 2015. Transcriptional analysis of adaptation to high glucose concentrations in Zymomonas mobilis. Applied Microbiology and Biotechnology 99 (4):2009–22. doi: 10.1007/s00253-014-6342-y.
  • Zhang, X., T. Wang, W. Zhou, X. Jia, and H. Wang. 2013. Use of a Tn5-based transposon system to create a cost-effective Zymomonas mobilis for ethanol production from lignocelluloses. Microbial Cell Factories 12 (1):41. doi: 10.1186/1475-2859-12-41.
  • Zhang, W., W. Xu, D. Ni, Q. Dai, C. Guang, T. Zhang, and W. Mu. 2019. An overview of levan-degrading enzyme from microbes. Applied Microbiology and Biotechnology 103 (19):7891–902. doi: 10.1007/s00253-019-10037-4.
  • Zhang, H. 2009. Study on fermentation of ethanol by Zymomonas mobilisand and its metabolic flux analysis. diss., Beijing Industrial and Commercial University.
  • Zhao, N., B. Yun, X. Q. Zhao, Z. Y. Yang, and F. W. Bai. 2012. Draft Genome Sequence of the Flocculating Zymomonas mobilis Strain ZM401 (ATCC 31822). Journal of Bacteriology 194 (24):7008–9. doi: 10.1128/JB.01947-12.
  • Zhou, X., S. Lü, Y. Xu, Y. Mo, and S. Yu. 2015. Improving the performance of cell biocatalysis and the productivity of xylonic acid using a compressed oxygen supply. Biochemical Engineering Journal 93:196–9. doi: 10.1016/j.bej.2014.10.014.
  • Zhou, N., A. J. Schifferdecker, A. Gamero, C. Compagno, T. Boekhout, J. PišKur, and W. Knecht. 2017. Kazachstania gamospora and Wickerhamomyces subpelliculosus: Two alternative baker’s yeasts in the modern bakery. International Journal of Food Microbiology 250:45–58. doi: 10.1016/j.ijfoodmicro.2017.03.013.
  • Zhu, Y., K. Thakur, J. Feng, J. Cai, J. Zhang, F. Hu, and Z. Wei. 2020. B-vitamin enriched fermented soymilk: A novel strategy for soy-based functional foods development. Trends in Food Science & Technology 105:43–55. doi: 10.1016/j.tifs.2020.08.019.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.