502
Views
6
CrossRef citations to date
0
Altmetric
Reviews

Strategies to optimize the structural and functional properties of myofibrillar proteins: Physical and biochemical perspectives

, , , , , & show all

References

  • Abie, S. M., D. Münch, B. Egelandsdal, F. Bjerke, I. Wergeland, and Ø. G. Martinsen. 2021. Combined 0.2 T static magnetic field and 20 kHz, 2 V/cm square wave electric field do not affect supercooling and freezing time of saline solution and meat samples. Journal of Food Engineering 311:110710. doi: 10.1016/j.jfoodeng.2021.110710.
  • Amiri, A., P. Sharifian, and N. Soltanizadeh. 2018. Application of ultrasound treatment for improving the physicochemical, functional and rheological properties of myofibrillar proteins. International Journal of Biological Macromolecules 111:139–47. doi: 10.1016/j.ijbiomac.2017.12.167.
  • Bai, Y., X. Zeng, C. Zhang, T. Zhang, C. Wang, M. Han, G. Zhou, and X. Xu. 2021. Effects of high hydrostatic pressure treatment on the emulsifying behavior of myosin and its underlying mechanism. LWT 146:111397. doi: 10.1016/j.lwt.2021.111397.
  • Bak, K. H., T. Bolumar, A. H. Karlsson, G. Lindahl, and V. Orlien. 2019. Effect of high pressure treatment on the color of fresh and processed meats: A review. Critical Reviews in Food Science and Nutrition 59 (2):228–52. doi: 10.1080/10408398.2017.1363712.
  • Brunton, N. P., J. G. Lyng, W. Li, D. A. Cronin, D. Morgan, and B. McKenna. 2005. Effect of radio frequency (RF) heating on the texture, colour and sensory properties of a comminuted pork meat product. Food Research International 38 (3):337–44. doi: 10.1016/j.foodres.2004.06.016.
  • Buckow, R., A. Sikes, and R. Tume. 2013. Effect of high pressure on physicochemical properties of meat. Critical Reviews in Food Science and Nutrition 53 (7):770–86. doi: 10.1080/10408398.2011.560296.
  • Cai, L., J. Feng, A. Cao, Y. Zhang, Y. Lv, and J. Li. 2018. Denaturation kinetics and aggregation mechanism of the sarcoplasmic and myofibril proteins from grass carp during microwave processing. Food and Bioprocess Technology 11 (2):417–26. doi: 10.1007/s11947-017-2025-x.
  • Cai, L., J. Wan, X. Li, and J. Li. 2020. Effects of different thawing methods on conformation and oxidation of myofibrillar protein from largemouth bass (Micropterus salmoides). Journal of Food Science 85 (8):2470–80. doi: 10.1111/1750-3841.15336.
  • Cai, L., W. Zhang, A. Cao, M. Cao, and J. Li. 2019. Effects of ultrasonics combined with far infrared or microwave thawing on protein denaturation and moisture migration of Sciaenops ocellatus (red drum). Ultrasonics Sonochemistry 55:96–104. doi: 10.1016/j.ultsonch.2019.03.017.
  • Cao, H., D. Fan, X. Jiao, J. Huang, J. Zhao, B. Yan, W. Zhou, W. Zhang, and H. Zhang. 2018. Effects of microwave combined with conduction heating on surimi quality and morphology. Journal of Food Engineering 228:1–11. doi: 10.1016/j.jfoodeng.2018.01.021.
  • Cao, H., X. Jiao, D. Fan, J. Huang, J. Zhao, B. Yan, W. Zhou, H. Zhang, and M. Wang. 2019a. Microwave irradiation promotes aggregation behavior of myosin through conformation changes. Food Hydrocolloids 96:11–9. doi: 10.1016/j.foodhyd.2019.05.002.
  • Cao, H., X. Jiao, D. Fan, J. Huang, J. Zhao, B. Yan, W. Zhou, W. Zhang, W. Ye, H. Zhang, et al. 2019b. Catalytic effect of transglutaminase mediated by myofibrillar protein crosslinking under microwave irradiation. Food Chemistry 284:45–52. doi: 10.1016/j.foodchem.2019.01.097.
  • Cao, Y., W. Ma, J. Huang, and Y. Xiong. 2020. Effects of sodium pyrophosphate coupled with catechin on the oxidative stability and gelling properties of myofibrillar protein. Food Hydrocolloids 104:105722. doi: 10.1016/j.foodhyd.2020.105722.
  • Chen, J., X. Zhang, S. Xue, and X. Xu. 2020. Effects of ultrasound frequency mode on myofibrillar protein structure and emulsifying properties. International Journal of Biological Macromolecules 163:1768–79. doi: 10.1016/j.ijbiomac.2020.09.114.
  • Chen, X., C.-g. Chen, Y.-z. Zhou, P.-j. Li, F. Ma, T. Nishiumi, and A. Suzuki. 2014. Effects of high pressure processing on the thermal gelling properties of chicken breast myosin containing κ-carrageenan. Food Hydrocolloids 40:262–72. doi: 10.1016/j.foodhyd.2014.03.018.
  • Chen, X., R. Tume, X. Xu, and G. Zhou. 2017. Solubilization of myofibrillar proteins in water or low ionic strength media: Classical techniques, basic principles, and novel functionalities. Critical Reviews in Food Science and Nutrition 57 (15):3260–80. doi: 10.1080/10408398.2015.1110111.
  • Chen, X., R. K. Tume, Y. Xiong, X. Xu, G. Zhou, C. Chen, and T. Nishiumi. 2018. Structural modification of myofibrillar proteins by high-pressure processing for functionally improved, value-added, and healthy muscle gelled foods. Critical Reviews in Food Science and Nutrition 58 (17):2981–3003. doi: 10.1080/10408398.2017.1347557.
  • Chen, X., X. Xu, D. Liu, G. Zhou, M. Han, and P. Wang. 2018. Rheological behavior, conformational changes and interactions of water-soluble myofibrillar protein during heating. Food Hydrocolloids 77:524–33. doi: 10.1016/j.foodhyd.2017.10.030.
  • Chen, X., X. Xu, and G. Zhou. 2016. Potential of high pressure homogenization to solubilize chicken breast myofibrillar proteins in water. Innovative Food Science & Emerging Technologies 33:170–9. doi: 10.1016/j.ifset.2015.11.012.
  • Chen, X., X. Xu, M. Han, G. Zhou, C. Chen, and P. Li. 2016. Conformational changes induced by high-pressure homogenization inhibit myosin filament formation in low ionic strength solutions. Food Research International 85:1–9. doi: 10.1016/j.foodres.2016.04.011.
  • Chen, X., Y. Xiong, and X. Xu. 2019. High-pressure homogenization combined with sulfhydryl blockage by hydrogen peroxide enhance the thermal stability of chicken breast myofibrillar protein aqueous solution. Food Chemistry 285:31–8. doi: 10.1016/j.foodchem.2019.01.131.
  • Cheng, J., M. Zhu, and X. Liu. 2020. Insight into the conformational and functional properties of myofibrillar protein modified by mulberry polyphenols. Food Chemistry 308:125592. doi: 10.1016/j.foodchem.2019.125592.
  • Chiozzi, V., S. Agriopoulou, and T. Varzakas. 2022. Advances, applications, and comparison of thermal (pasteurization, sterilization, and aseptic packaging) against non-thermal (ultrasounds, UV radiation, ozonation, high hydrostatic pressure) technologies in food processing. Applied Sciences 12 (4):2202. doi: 10.3390/app12042202.
  • Dias, C. L., T. Ala-Nissila, J. Wong-Ekkabut, I. Vattulainen, M. Grant, and M. Karttunen. 2010. The hydrophobic effect and its role in cold denaturation. Cryobiology 60 (1):91–9. doi: 10.1016/j.cryobiol.2009.07.005.
  • Du, X., M. Zhao, N. Pan, S. Wang, X. Xia, and D. Zhang. 2021. Tracking aggregation behaviour and gel properties induced by structural alterations in myofibrillar protein in mirror carp (Cyprinus carpio) under the synergistic effects of pH and heating. Food Chemistry 362:130222. doi: 10.1016/j.foodchem.2021.130222.
  • Fan, D.-m., B. Hu, L.-f. Lin, L.-l. Huang, M.-f. Wang, J.-x. Zhao, and H. Zhang. 2016. Rice protein radicals: Growth and stability under microwave treatment. RSC Advances 6 (100):97825–31. doi: 10.1039/C6RA15402F.
  • Feng, X., D. Wu, K. Yang, L. Wang, X. Wang, J. Ma, Y. Zhang, C. Wang, Y. Zhou, W. Sun, et al. 2021. Effect of sarcoplasmic proteins oxidation on the gel properties of myofibrillar proteins from pork muscles. Journal of Food Science 86 (5):1835–44. doi: 10.1111/1750-3841.15687.
  • Fernandes, F. A. N., A. Morata, and S. Rodrigues. 2021. Editorial: Non-thermal Technologies. Frontiers in Nutrition 8:752799. doi: 10.3389/fnut.2021.752799.
  • Fraga, F., A. Valerio, V. de Oliveira, M. Di Luccio, and D. de Oliveira. 2019. Effect of magnetic field on the Eversa(R) Transform 2.0 enzyme: Enzymatic activity and structural conformation. International Journal of Biological Macromolecules 122:653–8. doi: 10.1016/j.ijbiomac.2018.10.171.
  • Fu, X. J., K. Hayat, Z. H. Li, Q. L. Lin, S. Y. Xu, and S. P. Wang. 2012. Effect of microwave heating on the low-salt gel from silver carp (Hypophthalmichthys molitrix) surimi. Food Hydrocolloids 27 (2):301–8. doi: 10.1016/j.foodhyd.2011.09.009.
  • Gravelle, A. J., A. G. Marangoni, and S. Barbut. 2016. Insight into the mechanism of myofibrillar protein gel stability: Influencing texture and microstructure using a model hydrophilic filler. Food Hydrocolloids 60:415–24. doi: 10.1016/j.foodhyd.2016.04.014.
  • Guo, J., Y. Zhou, K. Yang, X. Yin, J. Ma, Z. Li, W. Sun, and M. Han. 2019. Effect of low-frequency magnetic field on the gel properties of pork myofibrillar proteins. Food Chemistry 274:775–81. doi: 10.1016/j.foodchem.2018.09.028.
  • Guo, Q., D.-W. Sun, J.-H. Cheng, and Z. Han. 2017. Microwave processing techniques and their recent applications in the food industry. Trends in Food Science & Technology 67:236–47. doi: 10.1016/j.tifs.2017.07.007.
  • Guo, Z., Z. Li, J. Wang, and B. Zheng. 2019. Gelation properties and thermal gelling mechanism of golden threadfin bream myosin containing CaCl2 induced by high pressure processing. Food Hydrocolloids 95:43–52. doi: 10.1016/j.foodhyd.2019.04.017.
  • Han, Z., M. Cai, J.-H. Cheng, and D.-W. Sun. 2018. Effects of electric fields and electromagnetic wave on food protein structure and functionality: A review. Trends in Food Science & Technology 75:1–9. doi: 10.1016/j.tifs.2018.02.017.
  • Han, Z., M. J. Cai, J. Cheng, and D. Sun. 2019. Effects of microwave and water bath heating on the interactions between myofibrillar protein from beef and ketone flavour compounds. International Journal of Food Science & Technology 54 (5):1787–93. doi: 10.1111/ijfs.14079.
  • Han, Z., M. J. Cai, J. H. Cheng, and D. W. Sun. 2021. Effects of constant power microwave on the adsorption behaviour of myofibril protein to aldehyde flavour compounds. Food Chemistry 336:127728. doi: 10.1016/j.foodchem.2020.127728.
  • Her, J., T. Kang, R. Hoptowit, and S. Jun. 2019. Oscillating magnetic field (OMF) Based supercooling preservation of fresh-cut honeydew melon. Transactions of the ASABE 62 (3):779–85. doi: 10.13031/trans.13286.
  • Hong, G. P., and K. B. Chin. 2010. Effects of microbial transglutaminase and sodium alginate on cold-set gelation of porcine myofibrillar protein with various salt levels. Food Hydrocolloids 24 (4):444–51. doi: 10.1016/j.foodhyd.2009.11.011.
  • Hu, R., M. Zhang, and Z. Fang. 2022. A novel synergistic freezing assisted by infrared pre-dehydration combined with magnetic field: Effect on freezing efficiency and thawed product qualities of beef. Food and Bioprocess Technology 15 (6):1392–405. doi: 10.1007/s11947-022-02825-0.
  • Hu, Y., Y. Gao, I. Solangi, S. Liu, and J. Zhu. 2022. Effects of tea polyphenols on the conformational, functional, and morphological characteristics of beef myofibrillar proteins. LWT 154:112596. doi: 10.1016/j.lwt.2021.112596.
  • Huang, J., S. Zeng, S. Xiong, and Q. Huang. 2016. Steady, dynamic, and creep-recovery rheological properties of myofibrillar protein from grass carp muscle. Food Hydrocolloids 61:48–56. doi: 10.1016/j.foodhyd.2016.04.043.
  • Huang, Q., K. Dong, Q. Wang, X. Huang, G. Wang, F. An, Z. Luo, and P. Luo. 2022. Changes in volatile flavor of yak meat during oxidation based on multi-omics. Food Chemistry 371:131103. doi: 10.1016/j.foodchem.2021.131103.
  • Huang, X., L. Sun, L. Liu, G. Wang, P. Luo, D. Tang, and Q. Huang. 2022. Study on the mechanism of mulberry polyphenols inhibiting oxidation of beef myofibrillar protein. Food Chemistry 372:131241. doi: 10.1016/j.foodchem.2021.131241.
  • Jayathunge, K. G. L. R., A. C. Stratakos, G. Delgado-Pando, and A. Koidis. 2019. Thermal and non-thermal processing technologies on intrinsic and extrinsic quality factors of tomato products: A review. Journal of Food Processing and Preservation 43 (3):e13901. doi: 10.1111/jfpp.13901.
  • Jiang, Q., F. Yang, S. Jia, D. Yu, P. Gao, Y. Xu, and W. Xia. 2022. The role of endogenous proteases in degrading grass carp (Ctenopharyngodon idella) myofibrillar structural proteins during ice storage. Lwt 154:112743. doi: 10.1016/j.lwt.2021.112743.
  • Jiang, S., J. Ding, J. Andrade, T. M. Rababah, A. Almajwal, M. M. Abulmeaty, and H. Feng. 2017. Modifying the physicochemical properties of pea protein by pH-shifting and ultrasound combined treatments. Ultrasonics Sonochemistry 38:835–42. doi: 10.1016/j.ultsonch.2017.03.046.
  • Kang, Z. L., L. H. Kong, Z. S. Gao, Y. P. Li, X. Li, and H. J. Ma. 2021. Effect of temperature increase and NaCl addition on aggregation and gel properties of pork myofibrillar protein. Journal of Food Processing and Preservation 45 (11):e15923. doi: 10.1111/jfpp.15923.
  • Kilarski, W. 2019. Functional morphology of the striated muscle. In Muscle and exercise physiology, 27–38.
  • Lam, R. S., and M. T. Nickerson. 2013. Food proteins: A review on their emulsifying properties using a structure-function approach. Food Chemistry 141 (2):975–84. doi: 10.1016/j.foodchem.2013.04.038.
  • Lan, W., X. Hu, X. Sun, X. Zhang, and J. Xie. 2020. Effect of the number of freeze-thaw cycles number on the quality of Pacific white shrimp (Litopenaeus vannamei): An emphasis on moisture migration and microstructure by LF-NMR and SEM. Aquaculture and Fisheries 5 (4):193–200. doi: 10.1016/j.aaf.2019.05.007.
  • Laycock, L., P. Piyasena, and G. S. Mittal. 2003. Radio frequency cooking of ground, comminuted and muscle meat products. Meat Science 65 (3):959–65. doi: 10.1016/S0309-1740(02)00311-X.
  • Li, F., B. Wang, B. Kong, S. Shi, and X. Xia. 2019. Decreased gelling properties of protein in mirror carp (Cyprinus carpio) are due to protein aggregation and structure deterioration when subjected to freeze-thaw cycles. Food Hydrocolloids 97:105223. doi: 10.1016/j.foodhyd.2019.105223.
  • Li, K., L. Fu, Y.-Y. Zhao, S.-W. Xue, P. Wang, X.-L. Xu, and Y.-H. Bai. 2020. Use of high-intensity ultrasound to improve emulsifying properties of chicken myofibrillar protein and enhance the rheological properties and stability of the emulsion. Food Hydrocolloids 98:105275. doi: 10.1016/j.foodhyd.2019.105275.
  • Li, X., M. Fan, Q. Huang, S. Zhao, S. Xiong, T. Yin, and B. Zhang. 2022. Effect of micro- and nano-starch on the gel properties, microstructure and water mobility of myofibrillar protein from grass carp. Food Chemistry 366:130579. doi: 10.1016/j.foodchem.2021.130579.
  • Li, Z., J. Wang, B. Zheng, and Z. Guo. 2019. Effects of high pressure processing on gelation properties and molecular forces of myosin containing deacetylated konjac glucomannan. Food Chemistry 291:117–25. doi: 10.1016/j.foodchem.2019.03.146.
  • Li, Z., J. Wang, B. Zheng, and Z. Guo. 2020. Impact of combined ultrasound-microwave treatment on structural and functional properties of golden threadfin bream (Nemipterus virgatus) myofibrillar proteins and hydrolysates. Ultrasonics Sonochemistry 65:105063. doi: 10.1016/j.ultsonch.2020.105063.
  • Liang, Y., H. Lu, and X. Zhang. 2021. Research progress on the effects of protein secondary and tertiary structures on texture and water-holding capacity of surimi gel and protein structure determination methods. Journal of Northeast Agricultural University 52:87–96.
  • Liu, H., H. Zhang, Q. Liu, Q. Chen, and B. Kong. 2020. Solubilization and stable dispersion of myofibrillar proteins in water through the destruction and inhibition of the assembly of filaments using high-intensity ultrasound. Ultrasonics Sonochemistry 67:105160. doi: 10.1016/j.ultsonch.2020.105160.
  • Liu, H., H. Zhang, Q. Liu, Q. Chen, and B. Kong. 2021. Filamentous myosin in low-ionic strength meat protein processing media: Assembly mechanism, impact on protein functionality, and inhibition strategies. Trends in Food Science & Technology 112:25–35. doi: 10.1016/j.tifs.2021.03.039.
  • Liu, H., Z. Wang, I. H. Badar, Q. Liu, Q. Chen, and B. Kong. 2022. Combination of high-intensity ultrasound and hydrogen peroxide treatment suppresses thermal aggregation behaviour of myofibrillar protein in water. Food Chemistry 367:130756. doi: 10.1016/j.foodchem.2021.130756.
  • Liu, S., Z. Wang, J. Zheng, W. Sun, Z. Xiao, and J.-H. Shao. 2023. Effects of direct current magnetic field co-treated with stirring on gel properties of chicken batter: Hydration and textural properties. Journal of Food Engineering 339:111279. doi: 10.1016/j.jfoodeng.2022.111279.
  • Madjid Ansari, A., K. Majidzadeh-A, B. Darvishi, H. Sanati, L. Farahmand, and D. Norouzian. 2017. Extremely low frequency magnetic field enhances glucose oxidase expression in Pichia pastoris GS115. Enzyme and Microbial Technology 98:67–75. doi: 10.1016/j.enzmictec.2016.12.011.
  • Manzocco, L., M. Alongi, G. Cortella, and M. Anese. 2022. Optimizing radiofrequency assisted cryogenic freezing to improve meat microstructure and quality. Journal of Food Engineering 335:111184. doi: 10.1016/j.jfoodeng.2022.111184.
  • Mi, J., W. Ni, P. Huang, J. Hong, R. Jia, S. Deng, X. Yu, H. Wei, and W. Yang. 2022. Effect of acetylated distarch adipate on the physicochemical characteristics and structure of shrimp (Penaeus vannamei) myofibrillar protein. Food Chemistry 373 (Pt B):131530. doi: 10.1016/j.foodchem.2021.131530.
  • Minatovicz, B., L. Sun, C. Foran, B. Chaudhuri, C. Tang, and M. Shameem. 2020. Freeze-concentration of solutes during bulk freezing and its impact on protein stability. Journal of Drug Delivery Science and Technology 58:101703. doi: 10.1016/j.jddst.2020.101703.
  • Mirmoghtadaie, L., S. Shojaee Aliabadi, and S. M. Hosseini. 2016. Recent approaches in physical modification of protein functionality. Food Chemistry 199:619–27. doi: 10.1016/j.foodchem.2015.12.067.
  • Mitra, B., A. Rinnan, and J. Ruiz-Carrascal. 2017. Tracking hydrophobicity state, aggregation behaviour and structural modifications of pork proteins under the influence of assorted heat treatments. Food Research International 101:266–73. doi: 10.1016/j.foodres.2017.09.027.
  • Obileke, K., H. Onyeaka, T. Miri, O. F. Nwabor, A. Hart, Z. T. Al‐Sharify, S. Al‐Najjar, and C. Anumudu. 2022. Recent advances in radio frequency, pulsed light, and cold plasma technologies for food safety. Journal of Food Process Engineering 45 (10):1–25. doi: 10.1111/jfpe.14138.
  • Pan, J., Z. Zhang, B. K. Mintah, H. Xu, M. Dabbour, Y. Cheng, C. Dai, R. He, and H. Ma. 2022. Effects of nonthermal physical processing technologies on functional, structural properties and digestibility of food protein: A review. Journal of Food Process Engineering 45 (4):1–16. doi: 10.1111/jfpe.14010.
  • Rastogi, N. K. 2011. Opportunities and challenges in application of ultrasound in food processing. Critical Reviews in Food Science and Nutrition 51 (8):705–22. doi: 10.1080/10408391003770583.
  • Saleem, R., and R. Ahmad. 2016. Effect of ultrasonication on secondary structure and heat induced gelation of chicken myofibrils. Journal of Food Science and Technology 53 (8):3340–8. doi: 10.1007/s13197-016-2311-z.
  • Santhi, D., A. Kalaikannan, and S. Sureshkumar. 2017. Factors influencing meat emulsion properties and product texture: A review. Critical Reviews in Food Science and Nutrition 57 (10):2021–7. doi: 10.1080/10408398.2013.858027.
  • Sudarti. 2016. Utilization of extremely low frequency (ELF) magnetic field is as alternative sterilization of Salmonella typhimurium in Gado-Gado. Agriculture and Agricultural Science Procedia 9:317–22. doi: 10.1016/j.aaspro.2016.02.140.
  • Sun, F., Q. Huang, T. Hu, S. Xiong, and S. Zhao. 2014. Effects and mechanism of modified starches on the gel properties of myofibrillar protein from grass carp. International Journal of Biological Macromolecules 64:17–24. doi: 10.1016/j.ijbiomac.2013.11.019.
  • Sun, X., and R. A. Holley. 2011. Factors influencing gel formation by myofibrillar proteins in muscle foods. Comprehensive Reviews in Food Science and Food Safety 10 (1):33–51. doi: 10.1111/j.1541-4337.2010.00137.x.
  • Tan, M., J. Ye, and J. Xie. 2021. Freezing-induced myofibrillar protein denaturation: Role of pH change and freezing rate. Lwt 152:112381. doi: 10.1016/j.lwt.2021.112381.
  • Tan, M., Z. Ding, J. Mei, and J. Xie. 2021. Effect of cellobiose on the myofibrillar protein denaturation induced by pH changes during freeze-thaw cycles. Food Chemistry 373 (Pt B):131511. doi: 10.1016/j.foodchem.2021.131511.
  • Thorat, A. A., B. Munjal, T. W. Geders, and R. Suryanarayanan. 2020. Freezing-induced protein aggregation – Role of pH shift and potential mitigation strategies. Journal of Controlled Release 323:591–9. doi: 10.1016/j.jconrel.2020.04.033.
  • Ueki, N., Y. Matsuoka, J. Wan, and S. Watabe. 2018. The effects of endogenous proteases within abdominal muscle parts on the rheological properties of thermally induced gels from white croaker (Pennahia argentata). Food Chemistry 268:498–503. doi: 10.1016/j.foodchem.2018.06.080.
  • Wang, B., X. Du, B. Kong, Q. Liu, F. Li, N. Pan, X. Xia, and D. Zhang. 2020. Effect of ultrasound thawing, vacuum thawing, and microwave thawing on gelling properties of protein from porcine longissimus dorsi. Ultrasonics Sonochemistry 64:104860. doi: 10.1016/j.ultsonch.2019.104860.
  • Wang, G., M. Liu, L. Cao, J. Yongsawatdigul, S. Xiong, and R. Liu. 2018. Effects of different NaCl concentrations on self-assembly of silver carp myosin. Food Bioscience 24:1–8. doi: 10.1016/j.fbio.2018.05.002.
  • Wang, H., X. Xia, X. Yin, H. Liu, Q. Chen, and B. Kong. 2021. Investigation of molecular mechanisms of interaction between myofibrillar proteins and 1-heptanol by multiple spectroscopy and molecular docking methods. International Journal of Biological Macromolecules 193 (Pt A):672–80. doi: 10.1016/j.ijbiomac.2021.10.105.
  • Wang, H., Z. Yang, H. Yang, J. Xue, Y. Li, S. Wang, L. Ge, Q. Shen, and M. Zhang. 2022. Comparative study on the rheological properties of myofibrillar proteins from different kinds of meat. LWT 153:112458. doi: 10.1016/j.lwt.2021.112458.
  • Wang, L., M. Xia, Y. Zhou, X. Wang, J. Ma, G. Xiong, L. Wang, S. Wang, and W. Sun. 2020. Gel properties of grass carp myofibrillar protein modified by low-frequency magnetic field during two-stage water bath heating. Food Hydrocolloids 107:105920. doi: 10.1016/j.foodhyd.2020.105920.
  • Wang, L., X. Wang, J. Ma, K. Yang, X. Feng, X. You, S. Wang, Y. Zhang, G. Xiong, L. Wang, et al. 2021. Effects of radio frequency heating on water distribution and structural properties of grass carp myofibrillar protein gel. Food Chemistry 343:128557. doi: 10.1016/j.foodchem.2020.128557.
  • Wang, M., X. Chen, Y. Zou, H. Chen, S. Xue, C. Qian, P. Wang, X. Xu, and G. Zhou. 2017. High-pressure processing-induced conformational changes during heating affect water holding capacity of myosin gel. International Journal of Food Science & Technology 52 (3):724–32. doi: 10.1111/ijfs.13327.
  • Wang, Q., X. Jiao, B. Yan, L. Meng, H. Cao, J. Huang, J. Zhao, H. Zhang, W. Chen, D. Fan, et al. 2021. Inhibitory effect of microwave heating on cathepsin l-induced degradation of myofibrillar protein gel. Food Chemistry 357:129745. doi: 10.1016/j.foodchem.2021.129745.
  • Wang, X., L. Wang, K. Yang, D. Wu, J. Ma, S. Wang, Y. Zhang, and W. Sun. 2021. Radio frequency heating improves water retention of pork myofibrillar protein gel: An analysis from water distribution and structure. Food Chemistry 350:129265. doi: 10.1016/j.foodchem.2021.129265.
  • Wang, X., X. Wang, T. Feng, Y. Shen, and S. Xia. 2021. Saltiness perception enhancement of fish meat treated by microwave: The significance of conformational characteristics, water and sodium mobility. Food Chemistry 347:129033. doi: 10.1016/j.foodchem.2021.129033.
  • Wang, X., M. Xia, Y. Zhou, L. Wang, X. Feng, K. Yang, J. Ma, Z. Li, L. Wang, W. Sun, et al. 2020. Gel properties of myofibrillar proteins heated at different heating rates under a low-frequency magnetic field. Food Chemistry 321:126728. doi: 10.1016/j.foodchem.2020.126728.
  • Wu, D., J. Guo, X. Wang, K. Yang, L. Wang, J. Ma, Y. Zhou, and W. Sun. 2021. The direct current magnetic field improved the water retention of low-salt myofibrillar protein gel under low temperature condition. Lwt 151:112034. doi: 10.1016/j.lwt.2021.112034.
  • Xia, M., Y. Chen, J. Guo, H. Huang, L. Wang, W. Wu, G. Xiong, and W. Sun. 2019. Water distribution and textual properties of heat-induced pork myofibrillar protein gel as affected by sarcoplasmic protein. Lwt 103:308–15. doi: 10.1016/j.lwt.2019.01.009.
  • Xu, J., M. Zhang, Y. Wang, and B. Bhandari. 2021. Novel technologies for flavor formation in the processing of meat products: A review. Food Reviews International. doi: 10.1080/87559129.2021.1926480.
  • Xu, Y., M. Dong, C. Tang, M. Han, X. Xu, and G. Zhou. 2020. Glycation-induced structural modification of myofibrillar protein and its relation to emulsifying properties. Lwt 117:108664. doi: 10.1016/j.lwt.2019.108664.
  • Xu, Y., and X. Xu. 2021. Modification of myofibrillar protein functional properties prepared by various strategies: A comprehensive review. Comprehensive Reviews in Food Science and Food Safety 20 (1):458–500. doi: 10.1111/1541-4337.12665.
  • Yang, K., H. Wang, J. Huang, D. Wu, M. Zhao, J. Ma, and W. Sun. 2021. Effects of direct current magnetic field treatment time on the properties of pork myofibrillar protein. International Journal of Food Science & Technology 56 (2):733–41. doi: 10.1111/ijfs.14717.
  • Yang, K., L. Wang, J. Guo, D. Wu, X. Wang, M. Wu, X. Feng, J. Ma, Y. Zhang, W. Sun, et al. 2021. Structural changes induced by direct current magnetic field improve water holding capacity of pork myofibrillar protein gels. Food Chemistry 345:128849. doi: 10.1016/j.foodchem.2020.128849.
  • Yang, K., Y. Zhou, J. Guo, X. Feng, X. Wang, L. Wang, J. Ma, and W. Sun. 2020. Low frequency magnetic field plus high pH promote the quality of pork myofibrillar protein gel: A novel study combined with low field NMR and Raman spectroscopy. Food Chemistry 326:126896. doi: 10.1016/j.foodchem.2020.126896.
  • Yang, N., X. Liang, J. Cao, Q. Zhang, Y. Tan, B. Xu, Y. Yang, Y. Wang, Q. Yang, H. Liu, et al. 2022. Denaturation manner of sarcoplasmic proteins in pale, soft and exudative meat determines their positive impacts on myofibrillar water-holding capacity. Meat Science 185:108723. doi: 10.1016/j.meatsci.2021.108723.
  • Zamora, A., and B. Guamis. 2015. Opportunities for ultra-high-pressure homogenisation (UHPH) for the food industry. Food Engineering Reviews 7 (2):130–42. doi: 10.1007/s12393-014-9097-4.
  • Zhan, X., D. Sun, Z. Zhu, and Q. Wang. 2018. Improving the quality and safety of frozen muscle foods by emerging freezing technologies: A review. Critical Reviews in Food Science and Nutrition 58 (17):2925–38. doi: 10.1080/10408398.2017.1345854.
  • Zhan, X., Z. Zhu, and D. Sun. 2019. Effects of extremely low frequency electromagnetic field on the freezing processes of two liquid systems. Lwt 103:212–21. doi: 10.1016/j.lwt.2018.12.079.
  • Zhang, M., F. Li, X. Diao, B. Kong, and X. Xia. 2017. Moisture migration, microstructure damage and protein structure changes in porcine longissimus muscle as influenced by multiple freeze-thaw cycles. Meat Science 133:10–8. doi: 10.1016/j.meatsci.2017.05.019.
  • Zhang, R., L. Xing, D. Kang, L. Zhou, L. Wang, and W. Zhang. 2021. Effects of ultrasound-assisted vacuum tumbling on the oxidation and physicochemical properties of pork myofibrillar proteins. Ultrasonics Sonochemistry 74:105582. doi: 10.1016/j.ultsonch.2021.105582.
  • Zhang, Y., and P. Ertbjerg. 2019. On the origin of thaw loss: Relationship between freezing rate and protein denaturation. Food Chemistry 299:125104. doi: 10.1016/j.foodchem.2019.125104.
  • Zhang, Y., E. Puolanne, and P. Ertbjerg. 2021. Mimicking myofibrillar protein denaturation in frozen-thawed meat: Effect of pH at high ionic strength. Food Chemistry 338:128017. doi: 10.1016/j.foodchem.2020.128017.
  • Zhang, Z., Y. Yang, P. Zhou, X. Zhang, and J. Wang. 2017. Effects of high pressure modification on conformation and gelation properties of myofibrillar protein. Food Chemistry 217:678–86. doi: 10.1016/j.foodchem.2016.09.040.
  • Zhao, X., X. Xu, and G. Zhou. 2021. Covalent chemical modification of myofibrillar proteins to improve their gelation properties: A systematic review. Comprehensive Reviews in Food Science and Food Safety 20 (1):924–59. doi: 10.1111/1541-4337.12684.
  • Zhou, H., H. Ma, P. Wu, and H. Zhang. 2014. Process in understanding magnetic biological effect in food processing. Food Science 35:285–9.
  • Zhou, L., Y. Yang, J. Wang, S. Wei, and S. Li. 2019. Effects of low fat addition on chicken myofibrillar protein gelation properties. Food Hydrocolloids. 90:126–31. doi: 10.1016/j.foodhyd.2018.11.044.
  • Zhou, L., J. Zhang, Y. Yin, W. Zhang, and Y. Yang. 2021. Effects of ultrasound-assisted emulsification on the emulsifying and rheological properties of myofibrillar protein stabilized pork fat emulsions. Foods 10 (6):1201. doi: 10.3390/foods10061201.
  • Zhuang, X., M. Han, Y. Bai, Y. Liu, L. Xing, X-l Xu, and G-h Zhou. 2018. Insight into the mechanism of myofibrillar protein gel improved by insoluble dietary fiber. Food Hydrocolloids. 74:219–26. doi: 10.1016/j.foodhyd.2017.08.015.
  • Zink, J., T. Wyrobnik, T. Prinz, and M. Schmid. 2016. Physical, chemical and biochemical modifications of protein-based films and coatings: An extensive review. International Journal of Molecular Sciences 17 (9):1376. doi: 10.3390/ijms17091376.
  • Zou, Y., H. Shi, P. Xu, D. Jiang, X. Zhang, W. Xu, and D. Wang. 2019. Combined effect of ultrasound and sodium bicarbonate marination on chicken breast tenderness and its molecular mechanism. Ultrasonics Sonochemistry 59:104735. doi: 10.1016/j.ultsonch.2019.104735.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.