980
Views
11
CrossRef citations to date
0
Altmetric
Reviews

Recent processing of fruits and vegetables using emerging thermal and non-thermal technologies. A critical review of their potentialities and limitations on bioactives, structure, and drying performance

ORCID Icon

References

  • Abano, E. 2020. Microwave and blanching pretreatments for hot air drying of orange-fleshed sweet potato slices (ipomoea batatas). International Journal of Food Science 2020:8872429. doi: 10.1155/2020/8872429.
  • Abbaspour-Gilandeh, Y., and A. Jahanbakhshi. 2019. Prediction kinetic, energy and exergy of quince under hot air dryer using ANNs and ANFIS. Food Science & Nutrition 8 (1):1–18. doi: 10.1002/fsn3.1347.
  • Adiamo, O. Q., Y. A. I. Eltoum, and E. E. Babiker. 2019. Effects of gum arabic edible coatings and sun-drying on the storage life and quality of raw and blanched tomato slices. Journal of Culinary Science & Technology 17 (1):45–58. doi: 10.1080/15428052.2017.1404535.
  • Ai, Z., Y. Lin, Y. Xie, S. Mowafy, Y. Zhang, M. Li, and Y. Liu. 2022. Effect of high-humidity hot air impingement steaming on Cistanche deserticola slices: Drying characteristics, weight loss, microstructure, color, and active components. Frontiers in Nutrition 9:824822. 10.3389/fnut.2022.824822.
  • Akbarian, M., B. Ghanbarzadeh, M. Sowti, and J. Dehghannya. 2015. Effects of pectin-CMC-based coating and osmotic dehydration pretreatments on microstructure and texture of the hot-air dried quince slices. Journal of Food Processing and Preservation 39 (3):260–9. doi: 10.1111/jfpp.12229.
  • Alam, M. R., J. G. Lyng, D. Frontuto, F. Marra, and L. Cinquanta. 2018. Effect of pulsed electric field pretreatment on drying kinetics, color, and texture of parsnip and carrot. Journal of Food Science 83 (8):2159–66. doi: 10.1111/1750-3841.14216.
  • Alolga, R. N., R. Osae, G. Essilfie, F. K. Saalia, S. Akaba, and F. Chikari. 2021. Sonication, osmosonication and vacuum-assisted osmosonication pretreatment of Ghanaian garlic slices: Effect on physicochemical properties and quality characteristics. Food Chemistry 343:128535. doi: 10.1016/j.foodchem.2020.128535.
  • Amami, E., W. Khezami, S. Mezrigui, L. S. Badwaik, A. K. Bejar, C. T. Perez, and N. Kechaou. 2017. Effect of ultrasound-assisted osmotic dehydration pretreatment on the convective drying of strawberry. Ultrasonics Sonochemistry 36:286–300. doi: 10.1016/j.ultsonch.2016.12.007.
  • Amanor-Atiemoh, R., C. Zhou, H. Wahia, A. T. Mustapha, M. T. Rashid, G. Sampson, A. Amoa-Owusu, H. Ma, and R. Zhou. 2020. Acoustically-aided osmo-dehydration pretreatments under pulsed vacuum dryer for apple slices: Drying kinetics, thermodynamics, and quality attributes. Journal of Food Science 85 (11):3909–19. doi: 10.1111/1750-3841.15484.
  • An, K., D. Tang, J. Wu, M. Fu, J. Wen, G. Xiao, and Y. Xu. 2019. Comparison of pulsed vacuum and ultrasound osmotic dehydration on drying of Chinese ginger (Zingiber officinale Roscoe): Drying characteristics, antioxidant capacity, and volatile profiles. Food Science & Nutrition 7 (8):2537–45. doi: 10.1002/fsn3.1103.
  • Bai, J. W., D. W. Sun, H. W. Xiao, A. S. Mujumdar, and Z. J. Gao. 2013. Novel high-humidity hot air impingement blanching (HHAIB) pretreatment enhances drying kinetics and color attributes of seedless grapes. Innovative Food Science & Emerging Technologies 20:230–7. doi: 10.1016/j.ifset.2013.08.011.
  • Bao, T., X. Hao, M. R. I. Shishir, N. Karim, and W. Chen. 2021. Cold plasma: An emerging pretreatment technology for the drying of jujube slices. Food Chemistry 337:127783. doi: 10.1016/j.foodchem.2020.127783.
  • Bao, T., X. Hao, M. R. I. Shishir, N. Karim, and W. Chen. 2022. Green alternative methods for pretreatment of whole jujube before the drying process. Journal of the Science of Food and Agriculture 102 (3):1030–9. doi: 10.1002/jsfa.11438.
  • Bassey, E. J., J. H. Cheng, and D. W. Sun. 2021. Novel nonthermal and thermal pretreatments for enhancing drying performance and improving quality of fruits and vegetables. Trends in Food Science and Technology. 112:137–48. doi: 10.1016/j.tifs.2021.03.045.
  • Bhagath, Y. B., and K. Manjula. 2019. Influence of composite edible coating systems on preservation of fresh meat cuts and products: A brief review on their trends and applications. International Food Research Journal 26:377–92.
  • Boateng, I. D., and X. Yang. 2021a. Do non-thermal pretreatments followed by intermediate-wave infrared drying affect toxicity, allergenicity, bioactives, functional groups, and flavor components of Ginkgo biloba seed ? A case study. Industrial Crops and Products 165:113421. doi: 10.1016/j.indcrop.2021.113421.
  • Boateng, I. D., and X. M. Yang. 2021b. Process optimization of intermediate-wave infrared drying: Screening by Plackett–Burman; comparison of Box-Behnken and central composite design and evaluation: A case study. Industrial Crops and Products 162:113287. doi: 10.1016/j.indcrop.2021.113287.
  • Boateng, I. D., W. Zhang, Y. Li, F. K. Saalia, and X. Yang. 2022. Non-thermal pretreatment affects Ginkgo biloba L. seed ‘ s product qualities, sensory, and physicochemical properties. Journal of Food Science 87 (1):1–18. doi: 10.1111/1750-3841.15999.
  • Böger, B. R., A. Salviato, D. F. Valezi, E. Di Mauro, S. R. Georgetti, and L. E. Kurozawa. 2018. Optimization of ultrasound-assisted extraction of grape-seed oil to enhance process yield and minimize free radical formation. Journal of the Science of Food and Agriculture 98 (13):5019–26. doi: 10.1002/jsfa.9036.
  • Bozkir, H., A. Rayman Ergün, E. Serdar, G. Metin, and T. Baysal. 2019. Influence of ultrasound and osmotic dehydration pretreatments on drying and quality properties of persimmon fruit. Ultrasonics Sonochemistry 54:135–41. doi: 10.1016/j.ultsonch.2019.02.006.
  • Bozkir, H., A. Rayman Ergün, Y. Tekgül, and T. Baysal. 2018. Ultrasound as pretreatment for drying garlic slices in microwave and convective dryer. Food Science and Biotechnology 54. doi: 10.1007/s10068-018-0483-1.
  • Cao, X., M. N. Islam, S. Zhong, X. Pan, M. Song, F. Shang, H. Nie, W. Xu, and Z. Duan. 2020. Drying kinetics, antioxidants, and physicochemical properties of litchi fruits by ultrasound-assisted hot air-drying. Journal of Food Biochemistry 44:1–9. doi: 10.1111/jfbc.13073.
  • Cao, Y., H. Hua, P. Yang, M. Chen, W. Chen, S. Wang, and X. Zhou. 2020. Investigation into the reaction mechanism underlying the atmospheric low-temperature plasma-induced oxidation of cellulose. Carbohydrate Polymers 233:115632. doi: 10.1016/j.carbpol.2019.115632.
  • Chemat, F., N. Rombaut, A. Meullemiestre, M. Turk, S. Perino, A. S. Fabiano-Tixier, and M. Abert-Vian. 2017. Review of Green Food Processing techniques. Preservation, transformation, and extraction. Innovative Food Science & Emerging Technologies 41:357–77. doi: 10.1016/j.ifset.2017.04.016.
  • Chen, J., C. Venkitasamy, Q. Shen, T. H. McHugh, R. Zhang, and Z. Pan. 2018. Development of healthy crispy carrot snacks using sequential infrared blanching and hot air drying method. LWT 97:469–75. doi: 10.1016/j.lwt.2018.07.026.
  • Chen, X. M., Z. Ma, and D. D. Kitts. 2018. Effects of processing method and age of leaves on phytochemical profiles and bioactivity of coffee leaves. Food Chemistry 249:143–53. doi: 10.1016/j.foodchem.2017.12.073.
  • Chen, Y. Q., J. H. Cheng, and D. W. Sun. 2020. Chemical, physical and physiological quality attributes of fruit and vegetables induced by cold plasma treatment: Mechanisms and application advances. Critical Reviews in Food Science and Nutrition 60 (16):2676–90. doi: 10.1080/10408398.2019.1654429.
  • Chottanom, P., A. Amornsin, N. Yodthava, and S. Wunnapong. 2020. Effect of edible coating on antioxidants and certain properties of dried Jerusalem artichoke. Pakistan Journal of Biological Sciences: PJBS 23 (3):271–7. doi: 10.3923/pjbs.2020.271.277.
  • Dai, J.-W., J. Wang, S.-L. Yang, M.-D. Wen, P.-F. Yin, W. Qin, Y.-W. Liu, Q. Liu, S.-X. Liu, L.-J. Xu, et al. 2020. High humidity air-impingement blanching (HHAIB) improves drying characteristics and quality of ground-cover chrysanthemum heads. International Journal of Food Engineering 16 (12). doi: 10.1515/ijfe-2020-0121.
  • Delfiya, A., D. Mohapatra, N. Kotwaliwale, and A. K. Mishra. 2018. Effect of microwave blanching and brine solution pretreatment on the quality of carrots dried in solar-biomass hybrid dryer. Journal of Food Processing and Preservation 42:1–14. doi: 10.1111/jfpp.13510.
  • Deng, L. Z., A. S. Mujumdar, X. H. Yang, J. Wang, Q. Zhang, Z. A. Zheng, Z. J. Gao, and H. W. Xiao. 2018. High humidity hot air impingement blanching (HHAIB) enhances drying rate and softens texture of apricot via cell wall pectin polysaccharides degradation and ultrastructure modification. Food Chemistry 261:292–300. 10.1016/j.foodchem.2018.04.062.
  • Deng, L. Z., A. S. Mujumdar, Q. Zhang, X. H. Yang, J. Wang, Z. A. Zheng, Z. J. Gao, and H. W. Xiao. 2019a. Chemical and physical pretreatments of fruits and vegetables: Effects on drying characteristics and quality attributes – A comprehensive review. Critical Reviews in Food Science and Nutrition 59 (9):1408–32. doi: 10.1080/10408398.2017.1409192.
  • Deng, L. Z., Z. Pan, A. S. Mujumdar, J. H. Zhao, Z. A. Zheng, Z. J. Gao, and H. W. Xiao. 2019b. High-humidity hot air impingement blanching (HHAIB) enhances drying quality of apricots by inactivating the enzymes, reducing drying time and altering cellular structure. Food Control 96:104–11. doi: 10.1016/j.foodcont.2018.09.008.
  • Dias da Silva, G., Z. M. P. Barros, R. A. B. de Medeiros, C. B. O. de Carvalho, S. C. Rupert Brandão, and P. M. Azoubel. 2016. Pretreatments for melon drying implementing ultrasound and vacuum. LWT 74:114–9. doi: 10.1016/j.lwt.2016.07.039.
  • Domonkos, M., P. Tichá, J. Trejbal, and P. Demo. 2021. Applications of cold atmospheric pressure plasma technology in medicine, agriculture and food industry. Applied Sciences 11 (11):4809. doi: 10.3390/app11114809.
  • Du, Y., F. Yang, H. Yu, Y. Xie, and W. Yao. 2022. Improving food drying performance by cold plasma pretreatment: A systematic review. Comprehensive Reviews in Food Science and Food Safety 21 (5):4402–4421. doi: 10.1111/1541-4337.13027.
  • Dzah, C. S., Y. Duan, H. Zhang, N. A. Serwah Boateng, and H. Ma. 2020a. Latest developments in polyphenol recovery and purification from plant by-products: A review. Trends in Food Science and Technology 99:375–88. doi: 10.1016/j.tifs.2020.03.003.
  • Dzah, C. S., Y. Duan, H. Zhang, C. Wen, J. Zhang, G. Chen, and H. Ma. 2020b. The effects of ultrasound assisted extraction on yield, antioxidant, anticancer and antimicrobial activity of polyphenol extracts: A review. Food Bioscience 35:100547. doi: 10.1016/j.fbio.2020.100547.
  • Escamilla-García, M., M. J. Rodríguez-Hernández, H. M. Hernández-Hernández, L. F. Delgado-Sánchez, B. E. García-Almendárez, A. Amaro-Reyes, and C. Regalado-González. 2018. Effect of an edible coating based on chitosan and oxidized starch on shelf life of Carica papaya L., and its physicochemical and antimicrobial properties. Coatings 8 (9):318. doi: 10.3390/coatings8090318.
  • Farahmandfar, R., M. Mohseni, and M. Asnaashari. 2017. Effects of quince seed, almond, and tragacanth gum coating on the banana slices properties during the process of hot air drying. Food Science & Nutrition 5 (6):1057–64. doi: 10.1002/fsn3.489.
  • Fauster, T., M. Giancaterino, P. Pittia, and H. Jaeger. 2020. Effect of pulsed electric field pretreatment on shrinkage, rehydration capacity and texture of freeze-dried plant materials. LWT 121:108937. doi: 10.1016/j.lwt.2019.108937.
  • Feng, Y., B. Wu, X. Yu, A. Yagoub, F. Sarpong, and C. Zhou. 2018. Effect of catalytic infrared dry-blanching on the processing and quality characteristics of garlic slices. Food Chemistry 266:309–16. doi: 10.1016/j.foodchem.2018.06.012.
  • Fijalkowska, A., M. Nowacka, A. Wiktor, M. Sledz, and D. Witrowa-Rajchert. 2016. Ultrasound as a Pretreatment Method to Improve Drying Kinetics and Sensory Properties of Dried Apple. Journal of Food Process Engineering 39 (3):256–65. doi: 10.1111/jfpe.12217.
  • Fratianni, A., S. Niro, M. C. Messia, G. Panfili, F. Marra, and L. Cinquanta. 2019. Evaluation of carotenoids and furosine content in air dried carrots and parsnips pre-treated with pulsed electric field (PEF). European Food Research and Technology 245 (11):2529–37. doi: 10.1007/s00217-019-03367-0.
  • Galus, S., E. A. A. Kibar, M. Gniewosz, and K. Kraśniewska. 2020. Novel materials in the preparation of edible films and coatings-A review. Coatings 10 (7):674. doi: 10.3390/coatings10070674.
  • Geng, Z., X. Huang, J. Wang, H. Xiao, X. Yang, L. Zhu, X. Qi, Q. Zhang, and B. Hu. 2022. Pulsed vacuum drying of pepper (Capsicum annuum L.): Effect of high-humidity hot air impingement blanching pretreatment on drying kinetics and quality attributes. Foods 11 (3):318. doi: 10.3390/foods11030318.
  • Gopal, K. R. 2017. High pressure processing of fruits and vegetable products: A review. International Journal of Pure & Applied Bioscience 5 (5):680–92. doi: 10.18782/2320-7051.2930.
  • Guiamba, I. R. F., U. Svanberg, and L. Ahrné. 2015. Effect of infrared blanching on enzyme activity and retention of β-carotene and vitamin C in dried mango. Journal of Food Science 80 (6):E1235–E1242. doi: 10.1111/1750-3841.12866.
  • Hernández-Hernández, H. M., L. Moreno-Vilet, and S. J. Villanueva-Rodríguez. 2019. Current status of emerging food processing technologies in Latin America: Novel non-thermal processing. Innovative Food Science & Emerging Technologies 58:102233. doi: 10.1016/j.ifset.2019.102233.
  • Horuz, E., H. J. Jaafar, and M. Maskan. 2017. Ultrasonication as pretreatment for drying of tomato slices in a hot air–microwave hybrid oven. Drying Technology 35 (7):849–59. doi: 10.1080/07373937.2016.1222538.
  • Huang, C. C., J. S. B. Wu, J. S. Wu, and Y. Ting. 2019. Effect of novel atmospheric-pressure jet pretreatment on the drying kinetics and quality of white grapes. Journal of the Science of Food and Agriculture 99 (11):5102–11. doi: 10.1002/jsfa.9754.
  • Huang, W., Z. Feng, R. Aila, Y. Hou, A. Carne, and A. E. D. A. Bekhit. 2019. Effect of pulsed electric fields (PEF) on physico-chemical properties, β-carotene and antioxidant activity of air-dried apricots. Food Chemistry 291:253–62. doi: 10.1016/j.foodchem.2019.04.021.
  • Huang, Y. L., and I. T. Hsieh. 2019. Physicochemical properties and intestinal health promoting water-insoluble fiber enriched fraction prepared from blanched vegetable soybean pod hulls. Molecules 24 (9):1796. doi: 10.3390/molecules24091796.
  • Islam, M. Z., T. Saha, K. Monalisa, and M. M. Hoque. 2019. Effect of starch edible coating on drying characteristics and antioxidant properties of papaya. Journal of Food Measurement and Characterization 13 (4):2951–60. doi: 10.1007/s11694-019-00215-3.
  • Ji, D., Q. Wang, T. Lu, H. Ma, and X. Chen. 2022. The effects of ultrasonication on the phytochemicals, antioxidant, and polyphenol oxidase and peroxidase activities in coffee leaves. Food Chemistry 373 (Pt B):131480. doi: 10.1016/j.foodchem.2021.131480.
  • Jin, W., M. Zhang, and W. Shi. 2018. Evaluation of ultrasound pretreatment and drying methods on selected quality attributes of bitter melon (Momordica charantia L.). Drying Technology 37 (3): 1–10. doi: 10.1080/07373937.2018.1458735.
  • Jose, A., S. Pareek, and E. Radhakrishnan. 2020. Advances in edible fruit coating materials. In Advances in agri-food biotechnology, ed. T. Sharma, R. Deshmukh, and H. Sonah. Singapore: Springer. doi: 10.1007/978-981-15-2874-3_15.
  • Kamel, S. M. 2013. Effect of microwave treatments on some bioactive compounds of parsley (Petroselinum Crispum) and dill (Anethum graveolens) leaves. Journal of Food Processing & Technology 04:4–9. doi: 10.4172/2157-7110.1000233.
  • Karim, N., M. R. I. Shishir, T. Bao, and W. Chen. 2021. Effect of cold plasma pretreated hot-air drying on the physicochemical characteristics, nutritional values and antioxidant activity of shiitake mushroom. Journal of the Science of Food and Agriculture 101 (15):6271–80. doi: 10.1002/jsfa.11296.
  • Khampakool, A., S. Soisungwan, and S. H. Park. 2019. Potential application of infrared assisted freeze drying (IRAFD) for banana snacks: Drying kinetics, energy consumption, and texture. LWT 99:355–63. doi: 10.1016/j.lwt.2018.09.081.
  • Kocira, A., K. Kozłowicz, K. Panasiewicz, M. Staniak, E. Szpunar-Krok, and P. Hortyńska. 2021. Polysaccharides as edible films and coatings: Characteristics and influence on fruit and vegetable quality—a review. Agronomy 11 (5):813. doi: 10.3390/agronomy11050813.
  • Koskiniemi, C. B., V. Truong, J. Den, R. Simunovic, and F. McFeeters. 2011. Improvement of heating uniformity in packaged acidified vegetables pasteurized with a 915 MHz continuous microwave system. Journal of Food Engineering 105 (1):149–60. doi: 10.1016/j.jfoodeng.2011.02.019.
  • Kumar, L., D. Ramakanth, K. Akhila, and K. K. Gaikwad. 2022. Edible films and coatings for food packaging applications: A review. Environmental Chemistry Letters 20 (1):875–900. doi: 10.1007/s10311-021-01339-z.
  • Lagnika, C., J. Huang, N. Jiang, D. Li, C. Liu, J. Song, Q. Wei, and M. Zhang. 2018. Ultrasound-assisted osmotic process on quality of microwave vacuum drying sweet potato. Drying Technology 36 (11):1367–79. doi: 10.1080/07373937.2017.1402786.
  • Lagnika, C., N. Jiang, J. Song, D. Li, C. Liu, J. Huang, Q. Wei, and M. Zhang. 2019. Effects of pretreatments on properties of microwave-vacuum drying of sweet potato slices. Drying Technology 37 (15):1901–14. doi: 10.1080/07373937.2018.1543702.
  • Lamanauskas, N., S. Šatkauskas, R. Bobinaitė, and P. Viškelis. 2015. Pulsed electric field (PEF) impact on Actinidia kolomikta drying efficiency. Journal of Food Process Engineering 38 (3):243–9. doi: 10.1111/jfpe.12161.
  • Lammerskitten, A., V. Mykhailyk, A. Wiktor, S. Toepfl, M. Nowacka, M. Bialik, J. Czyżewski, D. Witrowa-Rajchert, and O. Parniakov. 2019a. Impact of pulsed electric fields on physical properties of freeze-dried apple tissue. Innovative Food Science & Emerging Technologies 57:102211. doi: 10.1016/j.ifset.2019.102211.
  • Lammerskitten, A., I. Shorstkii, O. Parniakov, V. Mykhailyk, S. Toepfl, K. Rybak, M. Dadan, M. Nowacka, and A. Wiktor. 2020a. The effect of different methods of mango drying assisted by a pulsed electric field on chemical and physical properties. Journal of Food Processing and Preservation 44 (12). doi: 10.1111/jfpp.14973.
  • Lammerskitten, A., A. Wiktor, V. Mykhailyk, K. Samborska, E. Gondek, D. Witrowa-Rajchert, S. Toepfl, and O. Parniakov. 2020b. Pulsed electric field pre-treatment improves microstructure and crunchiness of freeze-dried plant materials: Case of strawberry. LWT 134:110266. doi: 10.1016/j.lwt.2020.110266.
  • Lammerskitten, A., A. Wiktor, C. Siemer, S. Toepfl, V. Mykhailyk, E. Gondek, K. Rybak, D. Witrowa-Rajchert, and O. Parniakov. 2019b. The effects of pulsed electric fields on the quality parameters of freeze-dried apples. Journal of Food Engineering 252:36–43. doi: 10.1016/j.jfoodeng.2019.02.006.
  • Lazaridou, A., and C. G. Biliaderis. 2020. Edible films and coatings with pectin. In Pectin: Technological and physiological properties, 99–123. New York: Springer Cham. doi: 10.1007/978-3-030-53421-9_6.
  • Liu, C., A. Pirozzi, G. Ferrari, E. Vorobiev, and N. Grimi. 2020. Impact of pulsed electric fields on vacuum drying kinetics and physicochemical properties of carrot. Food Research International (Ottawa, ON) 137:109658. doi: 10.1016/j.foodres.2020.109658.
  • Liu, P., A. S. Mujumdar, M. Zhang, and H. Jiang. 2015. Comparison of three blanching treatments on the color and anthocyanin level of the microwave-assisted spouted bed drying of purple flesh sweet potato. Drying Technology 33 (1):66–71. doi: 10.1080/07373937.2014.936558.
  • Liu, Z., Y. Song, Y. Guo, H. Wang, and Z. Wu. 2017. Influence of pulsed electric field pretreatment on vacuum freeze-dried apples and process parameter optimization. Advance Journal of Food Science and Technology 13 (6):224–35. doi: 10.19026/ajfst.13.5160.
  • Liu, Z. L., J. W. Bai, W. X. Yang, J. Wang, L. Z. Deng, X. L. Yu, Z. A. Zheng, Z. J. Gao, and H. W. Xiao. 2019. Effect of high-humidity hot air impingement blanching (HHAIB) and drying parameters on drying characteristics and quality of broccoli florets. Drying Technology 37 (10):1251–64. doi: 10.1080/07373937.2018.1494185.
  • Loureiro, A. d. C., F. d. C. d. A. Souza, E. A. Sanches, J. d. A. Bezerra, C. V. Lamarão, S. Rodrigues, F. A. N. Fernandes, and P. H. Campelo. 2021. Cold plasma technique as a pretreatment for drying fruits: Evaluation of the excitation frequency on drying process and bioactive compounds. Food Research International (Ottawa, ON) 147:110462. doi: 10.1016/j.foodres.2021.110462.
  • Manyatsi, T. S., A. R. Al-Hilphy, M. Majzoobi, A. Farahnaky, and M. Gavahian. 2022. Effects of infrared heating as an emerging thermal technology on physicochemical properties of foods. Critical Reviews in Food Science and Nutrition 15: 1–20. doi: 10.1080/10408398.2022.2043820.
  • Mehta, D., K. Yadav, K. Chaturvedi, U. S. Shivhare, and S. K. Yadav. 2022. Impact of cold plasma on extraction of polyphenol from de-oiled rice and corn bran: Improvement in extraction efficiency, in vitro digestibility, antioxidant activity, cytotoxicity and anti-inflammatory responses. Food and Bioprocess Technology 15 (5):1142–56. doi: 10.1007/s11947-022-02801-8.
  • Miraei Ashtiani, S. H., M. Rafiee, M. Mohebi Morad, M. Khojastehpour, M. R. Khani, A. Rohani, B. Shokri, and A. Martynenko. 2020. Impact of gliding arc plasma pretreatment on drying efficiency and physicochemical properties of grape. Innovative Food Science & Emerging Technologies 63:102381. doi: 10.1016/j.ifset.2020.102381.
  • Molina Filho, L., E. C. Frascareli, and M. A. Mauro. 2016. Effect of an edible pectin coating and blanching pretreatments on the air-drying kinetics of pumpkin (Cucurbita moschata). Food and Bioprocess Technology 9 (5):859–71. doi: 10.1007/s11947-016-1674-5.
  • Momeni, M., M. Tabibiazar, S. Khorram, M. Zakerhamidi, M. Mohammadifar, H. Valizadeh, and M. Ghorbani. 2018. Pectin modification assisted by nitrogen glow discharge plasma. International Journal of Biological Macromolecules 120 (Pt B):2572–8. doi: 10.1016/j.ijbiomac.2018.09.033.
  • Nalawade, S. A., A. Sinha, and H. U. Hebbar. 2018. Infrared based dry blanching and hybrid drying of bitter gourd slices: Process efficiency evaluation. Journal of Food Process Engineering 41(4). doi: 10.1111/jfpe.12672.
  • Nowacka, M., A. Wiktor, A. Anuszewska, M. Dadan, K. Rybak, and D. Witrowa-Rajchert. 2019. The application of unconventional technologies as pulsed electric field, ultrasound and microwave-vacuum drying in the production of dried cranberry snacks. Ultrasonics Sonochemistry 56:1–13. doi: 10.1016/j.ultsonch.2019.03.023.
  • Oladejo, A. O., H. Ma, W. Qu, C. Zhou, and B. Wu. 2017. Effects of ultrasound on mass transfer kinetics, structure, carotenoid and vitamin C content of osmodehydrated sweet potato (Ipomea Batatas). Food and Bioprocess Technology 10 (6):1162–72. doi: 10.1007/s11947-017-1890-7.
  • Onwude, D. I., N. Hashim, R. Janius, K. Abdan, G. Chen, and A. O. Oladejo. 2017. Non-thermal hybrid drying of fruits and vegetables: A review of current technologies. Innovative Food Science & Emerging Technologies 43:223–38. doi: 10.1016/j.ifset.2017.08.010.
  • Osae, R., G. Essilfie, R. N. Alolga, S. Akaba, X. Song, P. Owusu-Ansah, and C. Zhou. 2020a. Application of non-thermal pretreatment techniques on agricultural products prior to drying: A review. Journal of the Science of Food and Agriculture 100 (6):2585–99. doi: 10.1002/jsfa.10284.
  • Osae, R., G. Essilfie, R. N. Alolga, E. Bonah, H. Ma, and C. Zhou. 2020b. Drying of ginger slices—Evaluation of quality attributes, energy consumption, and kinetics study. Journal of Food Process Engineering 43:1–14. doi: 10.1111/jfpe.13348.
  • Osae, R., C. Zhou, R. N. Alolga, B. Xu, W. Tchabo, E. Bonah, E. A. Alenyorege, and H. Ma. 2019a. Effects of various nonthermal pretreatments on the physicochemical properties of dried ginger (Zingiber officinale Roscoe) slices from two geographical locations. Journal of Food Science 84 (10):2847–58. doi: 10.1111/1750-3841.14790.
  • Osae, R., C. Zhou, B. Xu, W. Tchabo, H. E. Tahir, A. T. Mustapha, and H. Ma. 2019b. Effects of ultrasound, osmotic dehydration, and osmosonication pretreatments on bioactive compounds, chemical characterization, enzyme inactivation, color, and antioxidant activity of dried ginger slices. Journal of Food Biochemistry 43:1–14. doi: 10.1111/jfbc.12832.
  • Ostermeier, R., P. Giersemehl, C. Siemer, S. Töpfl, and H. Jäger. 2018. Influence of pulsed electric field (PEF) pre-treatment on the convective drying kinetics of onions. Journal of Food Engineering 237:110–7. doi: 10.1016/j.jfoodeng.2018.05.010.
  • Owusu-Ansah, P., X. Yu, R. Osae, A. T. Mustapha, R. Zhang, and C. Zhou. 2020. Inactivation of Bacillus cereus from pork by thermal, non-thermal and single-frequency/multi-frequency thermosonication: Modelling and effects on physicochemical properties. LWT 133:109939. doi: 10.1016/j.lwt.2020.109939.
  • Pan, Z. 2020. Innovative infrared heating technologies for food and agricultural processing. Technology & Innovation 21 (4):1–16. doi: 10.21300/21.4.2020.8.
  • Parniakov, O., O. Bals, N. Lebovka, and E. Vorobiev. 2016. Pulsed electric field assisted vacuum freeze-drying of apple tissue. Innovative Food Science & Emerging Technologies 35:52–7. doi: 10.1016/j.ifset.2016.04.002.
  • Pataro, G., and G. Ferrari. 2020. Limitations of pulsed electric field utilization in food industry. In Pulsed Electric Fields to Obtain Healthier and Sustainable Food for Tomorrow, 283–310. Cambridge: Academic Press. doi: 10.1016/B978-0-12-816402-0.00013-6.
  • Pieczywek, P. M., A. Kozioł, D. Konopacka, J. Cybulska, and A. Zdunek. 2017. Changes in cell wall stiffness and microstructure in ultrasonically treated apple. Journal of Food Engineering. 197:1–8. doi: 10.1016/j.jfoodeng.2016.10.028.
  • Pour, A. K., S. Khorram, A. Ehsani, A. Ostadrahimi, and Z. Ghasempour. 2022. Atmospheric cold plasma effect on quality attributes of banana slices: Its potential use in blanching process. Innovative Food Science & Emerging Technologies 76:102945. doi: 10.1016/j.ifset.2022.102945.
  • Punia Bangar, S., M. Trif, F. Ozogul, M. Kumar, V. Chaudhary, M. Vukic, M. Tomar, and S. Changan. 2022. Recent developments in cold plasma-based enzyme activity (browning, cell wall degradation, and antioxidant) in fruits and vegetables. Comprehensive Reviews in Food Science and Food Safety 21 (2):1958–78. doi: 10.1111/1541-4337.12895.
  • Rajewska, K., and D. Mierzwa. 2017. Influence of ultrasound on the microstructure of plant tissue. Innovative Food Science & Emerging Technologies 43:117–29. doi: 10.1016/j.ifset.2017.07.034.
  • Rana, R., A. Islam, A. A. Sabuz, M. Hasan, and R. Ara. 2020. Effect of blanching pretreatments on the physicochemical and drying characteristics of Chui Jhal (Piper chaba H.) stem. International Journal of Food Science and Agriculture 4 (4):482–91. doi: 10.26855/ijfsa.2020.12.017.
  • Ranjha, M., M. A. N. Kanwal, R. Shafique, B. Arshad, R. N. Irfan, S. Kieliszek, M. Kowalczewski, P. Ł. Irfan, M. Khalid, M. Z. Roobab, et al. 2021. A critical review on pulsed electric field: A novel technology for the extraction of phytoconstituents. Molecules 26 (16):4893–23. doi: 10.3390/molecules26164893.
  • Ren, F., C. A. Perussello, Z. Zhang, J. P. Kerry, and B. K. Tiwari. 2018. Impact of ultrasound and blanching on functional properties of hot-air dried and freeze dried onions. LWT 87:102–11. doi: 10.1016/j.lwt.2017.08.053.
  • Rodríguez, Ó., W. Gomes, S. Rodrigues, and F. A. N. Fernandes. 2017. Effect of acoustically assisted treatments on vitamins, antioxidant activity, organic acids and drying kinetics of pineapple. Ultrasonics Sonochemistry 35 (Pt A):92–102. doi: 10.1016/j.ultsonch.2016.09.006.
  • Romero J, C. A., and B. D. Yépez V. 2015. Ultrasound as pretreatment to convective drying of Andean blackberry (Rubus glaucus Benth). Ultrasonics Sonochemistry 22:205–10. doi: 10.1016/j.ultsonch.2014.06.011.
  • Roueita, G., M. Hojjati, and M. Noshad. 2020. Study of physicochemical properties of dried kiwifruits using the natural hypertonic solution in ultrasound-assisted osmotic dehydration as pretreatment. International Journal of Fruit Science 20 (sup2):S491–S507. doi: 10.1080/15538362.2020.1741057.
  • Roy, K., R. Thory, A. Sinhmar, A. K. Pathera, and V. Nain. 2020. Development and characterization of nano starch-based composite films from mung bean (Vigna radiata). International Journal of Biological Macromolecules 144:242–51. doi: 10.1016/j.ijbiomac.2019.12.113.
  • Salehi, F. 2020. Physico-chemical properties of fruit and vegetable juices as affected by pulsed electric field: A review. International Journal of Food Properties 23 (1):1036–50. doi: 10.1080/10942912.2020.1775250.
  • Santacatalina, J. V., M. Contreras, S. Simal, J. A. Cárcel, and J. V. Garcia-Perez. 2016. Impact of applied ultrasonic power on the low temperature drying of apple. Ultrasonics Sonochemistry 28:100–9. doi: 10.1016/j.ultsonch.2015.06.027.
  • Santagata, G., S. Mallardo, G. Fasulo, P. Lavermicocca, F. Valerio, M. Di Biase, M. Di Stasio, M. Malinconico, and M. G. Volpe. 2018. Pectin-honey coating as novel dehydrating bioactive agent for cut fruit: Enhancement of the functional properties of coated dried fruits. Food Chemistry 258:104–10. doi: 10.1016/j.foodchem.2018.03.064.
  • Seifari, F. K., and H. Ahari. 2020. Active edible films and coatings with enhanced properties using nanoemulsion and nanocrystals. Food Heal 3:15–22.
  • Shewale, S. R., and H. U. Hebbar. 2017. Effect of infrared pretreatment on low-humidity air drying of apple slices. Drying Technology 35 (4):490–9. doi: 10.1080/07373937.2016.1190935.
  • Shewale, S. R., D. Rajoriya, and H. U. Hebbar. 2019. Low humidity air drying of apple slices: Effect of EMR pretreatment on mass transfer parameters, energy efficiency and quality. Innovative Food Science & Emerging Technologies 55:1–10. doi: 10.1016/j.ifset.2019.05.006.
  • Shishir, M. R. I., N. Karim, T. Bao, V. Gowd, T. Ding, C. Sun, and W. Chen. 2020. Cold plasma pretreatment – A novel approach to improve the hot air drying characteristics, kinetic parameters, and nutritional attributes of shiitake mushroom. Drying Technology 38 (16):2134–50. doi: 10.1080/07373937.2019.1683860.
  • Šic Žlabur, J., D. Colnar, S. Voća, J. M. Lorenzo, P. Munekata, E. S. Barba, F. J. Dobričević, N. Galić, A. Dujmić, F. Pliestić, et al. 2019. Effect of ultrasound pre-treatment and drying method on specialized metabolites of honeyberry fruits (Lonicera caerulea var. kamtschatica). Ultrasonics Sonochemistry 56:372–7. doi: 10.1016/j.ultsonch.2019.04.034.
  • Silva, K. S., C. C. Garcia, L. R. Amado, and M. A. Mauro. 2015. Effects of edible coatings on convective drying and characteristics of the dried pineapple. Food and Bioprocess Technology 8 (7):1465–75. doi: 10.1007/s11947-015-1495-y.
  • Sledz, M., A. Wiktor, M. Nowacka, and D. Witrowa-Rajchert. 2017. Drying kinetics, microstructure and antioxidant properties of basil treated by ultrasound. Journal of Food Process Engineering 40(1). doi: 10.1111/jfpe.12271.
  • Song, J., X. Wang, D. Li, C. Liu, Q. Yang, and M. Zhang. 2018. Effect of starch osmo-coating on carotenoids, colour and microstructure of dehydrated pumpkin slices. Journal of Food Science and Technology 55 (8):3249–56. doi: 10.1007/s13197-018-3258-z.
  • Srimagal, A., S. Mishra, and R. C. Pradhan. 2017. Effects of ethyl oleate and microwave blanching on drying kinetics of bitter gourd. Journal of Food Science and Technology 54 (5):1192–8. doi: 10.1007/s13197-017-2518-7.
  • Sruthi, N. U., K. Josna, R. Pandiselvam, A. Kothakota, M. Gavahian, and A. Mousavi Khaneghah. 2022. Impacts of cold plasma treatment on physicochemical, functional, bioactive, textural, and sensory attributes of food: A comprehensive review. Food Chemistry 368:130809. doi: 10.1016/j.foodchem.2021.130809.
  • Su, D., W. Lv, Y. Wang, L. Wang, and D. Li. 2020. Influence of microwave hot-air flow rolling dry-blanching on microstructure, water migration and quality of pleurotus eryngii during hot-air drying. Food Control 114:107228. doi: 10.1016/j.foodcont.2020.107228.
  • Sun, Q., X. Song, M. Arun S, L. Zhang, X. Yu, C. Zhou, Y. Tang, and A. E. G. A. Yagoub. 2022. Effects of blanching drying methods on the structure and physicochemical properties of starch in sweet potato slices. Food Hydrocolloids 127:107543. doi: 10.1016/j.foodhyd.2022.107543.
  • Sunil, C. K., B. Kamalapreetha, J. Sharathchandra, K. S. Aravind, and A. Rawson. 2017. Effect of ultrasound pre-treatment on microwave drying of okra. Journal of Applied Horticulture 19 (01):58–62. doi: 10.37855/jah.2017.v19i01.09.
  • Tabibian, S. A., M. Labbafi, G. H. Askari, A. R. Rezaeinezhad, and H. Ghomi. 2020. Effect of gliding arc discharge plasma pretreatment on drying kinetic, energy consumption and physico-chemical properties of saffron (Crocus sativus L.). Journal of Food Engineering 270:109766. doi: 10.1016/j.jfoodeng.2019.109766.
  • Tao, Y., P. Wang, Y. Wang, S. U. Kadam, Y. Han, J. Wang, and J. Zhou. 2016. Power ultrasound as a pretreatment to convective drying of mulberry (Morus alba L.) leaves: Impact on drying kinetics and selected quality properties. Ultrasonics Sonochemistry 31:310–8. doi: 10.1016/j.ultsonch.2016.01.012.
  • Telfser, A., and F. Gómez Galindo. 2019. Effect of reversible permeabilization in combination with different drying methods on the structure and sensorial quality of dried basil (Ocimum basilicum L.) leaves. LWT 99:148–55. doi: 10.1016/j.lwt.2018.09.062.
  • Todisco, K. M., N. S. Janzantti, A. B. Santos, F. S. Galli, and M. A. Mauro. 2018. Effects of temperature and pectin edible coatings with guava by-products on the drying kinetics and quality of dried red guava. Journal of Food Science and Technology 55 (12):4735–46. doi: 10.1007/s13197-018-3369-6.
  • Tolouie, H., M. A. Mohammadifar, H. Ghomi, and M. Hashemi. 2018. Cold atmospheric plasma manipulation of proteins in food systems. Critical Reviews in Food Science and Nutrition 58 (15):2583–97. 10.1080/10408398.2017.1335689.
  • Traffano-Schiffo, M. V., U. Tylewicz, M. Castro-Giraldez, P. J. Fito, L. Ragni, and M. Dalla Rosa. 2016. Effect of pulsed electric fields pre-treatment on mass transport during the osmotic dehydration of organic kiwifruit. Innovative Food Science & Emerging Technologies 38:243–51. doi: 10.1016/j.ifset.2016.10.011.
  • Trirattanapikul, W., and S. Phoungchandang. 2014. Microwave blanching and drying characteristics of Centella asiatica (L.) urban leaves using tray and heat pump-assisted dehumidified drying. Journal of Food Science and Technology 51 (12):3623–34. doi: 10.1007/s13197-012-0876-8.
  • Tylewicz, U., S. Tappi, C. Mannozzi, S. Romani, N. Dellarosa, L. Laghi, L. Ragni, P. Rocculi, and M. Dalla Rosa. 2017. Effect of pulsed electric field (PEF) pre-treatment coupled with osmotic dehydration on physico-chemical characteristics of organic strawberries. Journal of Food Engineering 213:2–9. doi: 10.1016/j.jfoodeng.2017.04.028.
  • Vallespir, F., Ó. Rodríguez, J. A. Cárcel, C. Rosselló, and S. Simal. 2019. Ultrasound assisted low-temperature drying of kiwifruit: Effects on drying kinetics, bioactive compounds and antioxidant activity. Journal of the Science of Food and Agriculture 99 (6):2901–9. doi: 10.1002/jsfa.9503.
  • Wahia, H., C. Zhou, A. T. Mustapha, R. Amanor-Atiemoh, L. Mo, O. A. Fakayode, and H. Ma. 2020. Storage effects on the quality quartet of orange juice submitted to moderate thermosonication: Predictive modeling and odor fingerprinting approach. Ultrasonics Sonochemistry 64:104982. doi: 10.1016/j.ultsonch.2020.104982.
  • Wang, H., Q. S. Zhao, X. D. Wang, Z. d. Hong, and B. Zhao. 2019. Pretreatment of ultrasound combined vacuum enhances the convective drying efficiency and physicochemical properties of okra (Abelmoschus esculentus). LWT 112:108201. doi: 10.1016/j.lwt.2019.05.099.
  • Wang, J., X. M. Fang, A. S. Mujumdar, J. Y. Qian, Q. Zhang, X. H. Yang, Y. H. Liu, Z. J. Gao, and H. W. Xiao. 2017a. Effect of high-humidity hot air impingement blanching (HHAIB) on drying and quality of red pepper (Capsicum annuum L.). Food Chemistry 220:145–52. doi: 10.1016/j.foodchem.2016.09.200.
  • Wang, J., A. S. Mujumdar, L. Z. Deng, Z. J. Gao, H. W. Xiao, and G. S. V. Raghavan. 2018. High-humidity hot air impingement blanching alters texture, cell-wall polysaccharides, water status and distribution of seedless grape. Carbohydrate Polymers 194:9–17. doi: 10.1016/j.carbpol.2018.04.023.
  • Wang, J., H. W. Xiao, X. M. Fang, A. S. Mujumdar, S. K. Vidyarthi, and L. Xie. 2020. Effect of high-humidity hot air impingement blanching and pulsed vacuum drying on phytochemicals content, antioxidant capacity, rehydration kinetics and ultrastructure of Thompson seedless grape. Drying Technology 40 (5): 1–14. doi: 10.1080/07373937.2020.1845721.
  • Wang, J., X. H. Yang, A. S. Mujumdar, D. Wang, J. H. Zhao, X. M. Fang, Q. Zhang, L. Xie, Z. J. Gao, and H. W. Xiao. 2017b. Effects of various blanching methods on weight loss, enzymes inactivation, phytochemical contents, antioxidant capacity, ultrastructure and drying kinetics of red bell pepper (Capsicum annuum L.). LWT 77:337–47. doi: 10.1016/j.lwt.2016.11.070.
  • Wang, L., B. Xu, B. Wei, and R. Zeng. 2018. Low frequency ultrasound pretreatment of carrot slices: Effect on the moisture migration and quality attributes by intermediate-wave infrared radiation drying. Ultrasonics Sonochemistry 40 (Pt A):619–28. doi: 10.1016/j.ultsonch.2017.08.005.
  • Wen, C., J. Zhang, H. Zhang, C. S. Dzah, M. Zandile, Y. Duan, H. Ma, and X. Luo. 2018. Advances in ultrasound assisted extraction of bioactive compounds from cash crops – A review. Ultrasonics Sonochemistry 48:538–49. doi: 10.1016/j.ultsonch.2018.07.018.
  • Wiktor, A., M. Nowacka, M. Dadan, K. Rybak, W. Lojkowski, T. Chudoba, and D. Witrowa-Rajchert. 2016. The effect of pulsed electric field on drying kinetics, color, and microstructure of carrot. Drying Technology 34 (11):1286–96. doi: 10.1080/07373937.2015.1105813.
  • Wiktor, A., and D. Witrowa-Rajchert. 2020. Drying kinetics and quality of carrots subjected to microwave-assisted drying preceded by combined pulsed electric field and ultrasound treatment. Drying Technology 38 (1–2):176–88. doi: 10.1080/07373937.2019.1642347.
  • Won, M. Y., S. J. Lee, and S. C. Min. 2017. Mandarin preservation by microwave-powered cold plasma treatment. Innovative Food Science & Emerging Technologies 39:25–32. doi: 10.1016/j.ifset.2016.10.021.
  • Wu, B., Y. Guo, J. Wang, Z. Pan, and H. Ma. 2018. Effect of thickness on non-fried potato chips subjected to infrared radiation blanching and drying. Journal of Food Engineering 237:249–55. doi: 10.1016/j.jfoodeng.2018.05.030.
  • Wu, Y., and D. Zhang. 2019. Pulsed electric field enhanced freeze-drying of apple tissue. Czech Journal of Food Sciences 37 (6):432–8. doi: 10.17221/230/2018-CJFS.
  • Xiao, H. W., Z. Pan, L. Z. Deng, H. M. El-Mashad, X. H. Yang, A. S. Mujumdar, Z. J. Gao, and Q. Zhang. 2017. Recent developments and trends in thermal blanching – A comprehensive review. Information Processing in Agriculture 4 (2):101–27. doi: 10.1016/j.inpa.2017.02.001.
  • Xu, B., J. Chen, E. Sylvain Tiliwa, W. Yan, S. M. Roknul Azam, J. Yuan, B. Wei, C. Zhou, and H. Ma. 2021. Effect of multi-mode dual-frequency ultrasound pretreatment on the vacuum freeze-drying process and quality attributes of the strawberry slices. Ultrasonics Sonochemistry 78:105714. doi: 10.1016/j.ultsonch.2021.105714.
  • Xu, B., E. Sylvain Tiliwa, B. Wei, B. Wang, Y. Hu, L. Zhang, A. S. Mujumdar, C. Zhou, and H. Ma. 2022a. Multi-frequency power ultrasound as a novel approach improves intermediate-wave infrared drying process and quality attributes of pineapple slices. Ultrasonics Sonochemistry 88:106083. doi: 10.1016/j.ultsonch.2022.106083.
  • Xu, B., E. Sylvain Tiliwa, W. Yan, S. M. Roknul Azam, B. Wei, C. Zhou, H. Ma, and B. Bhandari. 2022b. Recent development in high quality drying of fruits and vegetables assisted by ultrasound: A review. Food Research International (Ottawa, ON) 152:110744. doi: 10.1016/j.foodres.2021.110744.
  • Yamakage, K., T. Yamada, K. Takahashi, K. Takaki, M. Komuro, K. Sasaki, H. Aoki, J. Kamagata, S. Koide, and T. Orikasa. 2021. Impact of pre-treatment with pulsed electric field on drying rate and changes in spinach quality during hot air drying. Innovative Food Science & Emerging Technologies 68:102615. doi: 10.1016/j.ifset.2021.102615.
  • Yao, L., L. Fan, and Z. Duan. 2020. Effect of different pretreatments followed by hot-air and far-infrared drying on the bioactive compounds, physicochemical property and microstructure of mango slices. Food Chemistry 305:125477. doi: 10.1016/j.foodchem.2019.125477.
  • Yao, Y., Y. Pan, and S. Liu. 2020. Power ultrasound and its applications: A state-of-the-art review. Ultrasonics Sonochemistry 62:104722. doi: 10.1016/j.ultsonch.2019.104722.
  • Yildiz, G., and G. Izli. 2019. The effect of ultrasound pretreatment on quality attributes of freeze-dried quince slices: Physical properties and bioactive compounds. Journal of Food Process Engineering 42:1–8. doi: 10.1111/jfpe.13223.
  • Yu, X.-L., H.-Y. Ju, A. S. Mujumdar, Z.-A. Zheng, J. Wang, L.-Z. Deng, Z.-J. Gao, and H.-W. Xiao. 2019. Experimental and simulation studies of heat transfer in high-humidity hot air impingement blanching (HHAIB) of carrot. Food and Bioproducts Processing 114:196–204. doi: 10.1016/j.fbp.2019.01.001.
  • Yu, Y., T. Z. Jin, and G. Xiao. 2017. Effects of pulsed electric fields pretreatment and drying method on drying characteristics and nutritive quality of blueberries. Journal of Food Processing and Preservation 41(6). doi: 10.1111/jfpp.13303.
  • Zhang, C., X. Lyu, R. Naveed Arshad, R. Muhammad Aadil, Y. Tong, W. Zhao, and R. Yang. 2023. Pulsed electric field as a promising technology for solid foods processing: A review. Food Chemistry 403 (1):134367. doi: 10.1016/j.foodchem.2022.134367.
  • Zhang, M., H. Chen, A. S. Mujumdar, J. Tang, S. Miao, and Y. Wang. 2017. Recent developments in high-quality drying of vegetables, fruits, and aquatic products. Critical Reviews in Food Science and Nutrition 57 (6):1239–55. doi: 10.1080/10408398.2014.979280.
  • Zhang, X. L., C. S. Zhong, A. S. Mujumdar, X. H. Yang, L. Z. Deng, J. Wang, and H. W. Xiao. 2019. Cold plasma pretreatment enhances drying kinetics and quality attributes of chili pepper (Capsicum annuum L.). Journal of Food Engineering 241:51–7. doi: 10.1016/j.jfoodeng.2018.08.002.
  • Zhang, Z., Z. Liu, C. Liu, D. Li, N. Jiang, and L. Chunquan. 2016. Effects of ultrasound pretreatment on drying kinetics and quality parameters of button mushroom slices. Drying Technology 34 (15). doi: 10.1080/07373937.2015.1117486.
  • Zhao, Y. Y., J. Y. Yi, J. F. Bi, Q. Q. Chen, M. Zhou, and B. Zhang. 2019. Improving of texture and rehydration properties by ultrasound pretreatment for infrared-dried shiitake mushroom slices. Drying Technology 37 (3):352–62. doi: 10.1080/07373937.2018.1456449.
  • Zhou, C., C. E. Okonkwo, A. A. Inyinbor, A. Yagoub, and A. F. Olaniran. 2021. Ultrasound, infrared and its assisted technology, a promising tool in physical food processing: A review of recent developments. Critical Reviews in Food Science and Nutrition 18: 1–25. doi: 10.1080/10408398.2021.1966379.
  • Zhou, Y.-H., S. K. Vidyarthi, C.-S. Zhong, Z.-A. Zheng, Y. An, J. Wang, Q. Wei, and H.-W. Xiao. 2020. Cold plasma enhances drying and color, rehydration ratio and polyphenols of wolfberry via microstructure and ultrastructure alteration. LWT 134:110173–7. doi: 10.1016/j.lwt.2020.110173.
  • Zielinska, M., D. Zielinska, and M. Markowski. 2018. The effect of microwave-vacuum pretreatment on the drying kinetics, color and the content of bioactive compounds in osmo-microwave-vacuum dried cranberries (Vaccinium macrocarpon). Food and Bioprocess Technology 11 (3):585–602. doi: 10.1007/s11947-017-2034-9.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.