4,607
Views
5
CrossRef citations to date
0
Altmetric
Reviews

The impact of roasting on cocoa quality parameters

ORCID Icon, ORCID Icon & ORCID Icon

References

  • Abo-Bakr, T. M, and L. A. Shekib. 1987. Studies on cocoa beans (Theobroma cocoa L.). Zeitschrift für Untersuchung der Lebensmittel 184 (4):271–3. doi: 10.1111/j.1439-0396.2004.v88_i11-12_volindex.x.
  • Aboud, S. A., A. B. Altemimi, A. R. S. Al-HiIphy, L. Yi-Chen, and F. Cacciola. 2019. A comprehensive review on infrared heating applications in food processing. Molecules 24 (22):4125. doi: 10.3390/molecules24224125.
  • Afoakwa, E. O., E. Ofosu-Ansah, J. F. Takrama, A. S. Budu, and H. Mensah-Brown. 2014. Changes in chemical quality of cocoa butter during roasting of pulp pre-conditioned and fermented cocoa (Theobroma cacao) beans. International Food Research Journal 21:2221–7. doi: 10.1007/s13197-011-0446-5.
  • Afoakwa, E. O., A. Paterson, M. Fowler, and A. Ryan. 2008. Flavor formation and character in cocoa and chocolate: A critical review. Critical Reviews in Food Science and Nutrition 48 (9):840–57. doi: 10.1080/10408390701719272.
  • Aprotosoaie, A. C., S. V. Luca, and A. Miron. 2016. Flavor chemistry of cocoa and cocoa products – An overview. Comprehensive Reviews in Food Science and Food Safety 15 (1):73–91. doi: 10.1111/1541-4337.12180.
  • Awuah, G. B., H. S. Ramaswamy, and J. Tang. 2014. Radio-frequency heating in food processing, ed. Taylor & Francis Group. Boca Raton, FL: CRC Press. Accessed July 7, 2020.
  • Beckett, S. 2008. The Science of Chocolate. Cambridge England; New York: The Royal Society of Chemistry.
  • Bonvehí, J. S, and F. V. Coll. 2002. Factors affecting the formation of alkylpyrazines during roasting treatment in natural and alkalinized cocoa powder. Journal of Agricultural and Food Chemistry 50 (13):3743–50. doi: 10.1021/jf011597k.
  • Bordiga, M., M. Locatelli, F. Travaglia, J. Daniel Coïsson, G. Mazza, and M. Arlorio. 2015. Evaluation of the effect of processing on cocoa polyphenols: Antiradical activity, anthocyanins and procyanidins profiling from raw beans to chocolate. International Journal of Food Science & Technology 50 (3):840–8. doi: 10.1111/ijfs.12760.
  • Brands, C. M. J. 2002. Kinetic modelling of the Maillard reaction between proteins and sugars. PhD, Product design and quality science, Wageningen University and Research.
  • Capuano, E, and V. Fogliano. 2011. Acrylamide and 5-hydroxymethylfurfural (HMF): A review on metabolism, toxicity, occurrence in food and mitigation strategies. LWT - Food Science and Technology 44 (4):793–810. doi: 10.1016/j.lwt.2010.11.002.
  • Carlin, J. T., K. N. Lee, O. A.-L. Hsieh, L. S. Hwang, C.-T. Ho, and S. S. Chang. 1986. Comparision of acidic and basic volatile compounds of cocoa butters from roasted and unroasted cocoa beans. Journal of the American Oil Chemists’ Society 63 (8):1031–6. doi: 10.1007/BF02673793.
  • Claeys, W. L., K. De Vleeschouwer, and M. E. Hendrickx. 2005. Kinetics of acrylamide formation and elimination during heating of an asparagine − sugar model system. Journal of Agricultural and Food Chemistry 53 (26):9999–10005. doi: 10.1021/jf051197n.
  • Alimentarius, C. 1981. CODEX Standard for cocoa butter. www.fao.org.
  • Coelho, C., M. Ribeiro, A. C. S. Cruz, M. Rosário, M. Domingues, M. A. Coimbra, M. Bunzel, and F. M. Nunes. 2014. Nature of phenolic compounds in coffee melanoidins. Journal of Agricultural and Food Chemistry 62 (31):7843–53. doi: 10.1021/jf501510d.
  • de Brito, E. S., N. H. P. Garcia, M. I. Gallao, A. L. Cortelazzo, P. S. Fevereiro, and M. R. Braga. 2000. Structural and chemical changes in cocoa (Theobroma cacao L) during fermentation, drying and roasting. Journal of the Science of Food and Agriculture 1:281–8. doi: 10.1002/1097-0010(20010115)81:2 < 281::AID-JSFA808 > 3.0.CO;2-B.
  • de Taeye, C., M. Bodart, Gil. l Caullet, and S. Collin. 2017. Roasting conditions for preserving cocoa flavan-3-ol monomers and oligomers: Interesting behaviour of Criollo clones. Journal of the Science of Food and Agriculture 97 (12):4001–8. doi: 10.1002/jsfa.8265.
  • de Taeye, C., M. L. Kankolongo Cibaka, V. Jerkovic, and S. Collin. 2014. Degradation of (-)-epicatechin and procyanidin B2 in aqueous and lipidic model systems. First evidence of “chemical” flavan-3-ol oligomers in processed cocoa. Journal of Agricultural and Food Chemistry 62 (36):9002–16. doi: 10.1021/jf502016z.
  • Diab, J., R. Hertz-Schünemann, T. Streibel, and R. Zimmermann. 2014. Online measurement of volatile organic compounds released during roasting of cocoa beans. Food Research International 63:344–52. doi: 10.1016/j.foodres.2014.04.047.
  • Djikeng, F. T., W. Teyomnou Teyomnou, N. Tenyang, B. Tiencheu, A. T. Morfor, B. A. H. Touko, S. N. Houketchang, G. T. Boungo, M. S. L. Karuna, F. Z. Ngoufack, et al. 2018. Effect of traditional and oven roasting on the physicochemical properties of fermented cocoa beans. Heliyon 4 (2):e00533. doi: 10.1016/j.heliyon.2018.e00533.
  • Echavarría, A. P., J. Pagán, and A. Ibarz. 2012. Melanoidins formed by Maillard reaction in food and their biological activity. Food Engineering Reviews 4 (4):203–23. doi: 10.1007/s12393-012-9057-9.
  • Febrianto, N. A., S. Wang, and F. Zhu. 2021. Chemical and biological properties of cocoa beans affected by processing: A review. Critical Reviews in Food Science and Nutrition 28:1–32. doi: 10.1080/10408398.2021.1928597.
  • Fogliano, V., M. L. Corollaro, P. Vitaglione, A. Napolitano, R. Ferracane, F. Travaglia, M. Arlorio, A. Costabile, A. Klinder, and G. Gibson. 2011. In vitro bioaccessibility and gut biotransformation of polyphenols present in the water-insoluble cocoa fraction. Molecular Nutrition and Food Research 55:44–55. doi: 10.1002/mnfr.201000360.
  • Gil, M., D. Uribe, V. Gallego, C. Bedoya, and S. Arango-Varela. 2021. Traceability of polyphenols in cocoa during the postharvest and industrialization processes and their biological antioxidant potential. Heliyon 7 (8):e07738. doi: 10.1016/j.heliyon.2021.e07738.
  • Goerling, P. M, and K. P. Ernst-Zuercher. 1975. Process for continuously producing a roasted cocoa mass and for manufacturing a chocolate mass. US Patent number 3,904,777. United States of America filed September 9, 1975.
  • Granvogl, M, and P. Schieberle. 2007. Quantification of 3-aminopropionamide in cocoa, coffee and cereal products. European Food Research and Technology 225 (5–6):857–63. doi: 10.1007/s00217-006-0492-9.
  • Grebenteuch, S., L. W. Kroh, S. Drusch, and S. Rohn. 2021. Formation of secondary and tertiary volatile compounds resulting from the lipid oxidation of rapeseed oil. Foods 10 (10):2417. doi: 10.3390/foods10102417.
  • Gutiérrez, T. J. 2017. State of the art chocolate manufacture: A review. Comprehensive Reviews in Food Science and Food Safety 16 (6):1313–44. doi: 10.1111/1541-4337.12301.
  • Hashim, L., S. Hudiyono, and H. Chaveron. 1997. Volatile compounds of oxidized cocoa butter. Food Research International 30 (3-4):163–9. doi: 10.1016/S0963-9969(97)00039-2.
  • Hidalgo, F. J, and R. Zamora. 2019. Formation of phenylacetic acid and benzaldehyde by degradation of phenylalanine in the presence of lipid hydroperoxides: New routes in the amino acid degradation pathways initiated by lipid oxidation products. Food Chemistry: X 2:100037. doi: 10.1016/j.fochx.2019.100037.
  • Hoskin, J. M, and P. S. Dimick. 1980. Observations of chocolate during conching by scanning electron microscopy and viscometry. Journal of Food Science 45 (6):1541–5. doi: 10.1111/j.1365-2621.1980.tb07558.x.
  • Huang, Y, and S. A. Barringer. 2011. Monitoring of cocoa volatiles produced during roasting by selected ion flow tube-mass spectrometry (SIFT-MS). Journal of Food Science 76 (2):C279–C286. doi: 10.1111/j.1750-3841.2010.01984.x.
  • International Agency for Research on Cancer. 1994. Acrylamide. In IARC monographs on the evaluation of the carcinogenic risk of chemicals to humans. Lyon, France: World Health Organization.
  • International Cocoa Organization. 2021, February. Cocoa market report ICCO (Côte d’Ivoire).
  • Ioannone, F., C. D. Di Mattia, M. De Gregorio, M. Sergi, M. Serafini, and G. Sacchetti. 2015. Flavanols, proanthocyanidins and antioxidant activity changes during cocoa (Theobroma cacao L.) roasting as affected by temperature and time of processing. Food Chemistry 174:256–62. doi: 10.1016/j.foodchem.2014.11.019.
  • Kolek, E., P. Simko, and P. Simon. 2006. Inhibition of acrylamide formation in asparagine/D-glucose model system by NaCl addition. European Food Research and Technology 224 (2):283–4. doi: 10.1007/s00217-006-0319-8.
  • Kothe, L., B. F. Zimmermann, and R. Galensa. 2013. Temperature influences epimerization and composition of flavanol monomers, dimers and trimers during cocoa bean roasting. Food Chemistry 141 (4):3656–63. doi: 10.1016/j.foodchem.2013.06.049.
  • Krysiak, W. 2011. Effects of convective and microwave roasting on the physicochemical properties of cocoa beans and cocoa butter extracted from this material. Grasas y Aceites 62 (4):467–78. doi: 10.3989/gya.114910.
  • Maire, E, and P. J. Withers. 2014. Quantitative X-ray tomography. International Materials Reviews 59 (1):1–43. doi: 10.1179/1743280413Y.0000000023.
  • Martins, S., W. Jongen, and M. A. van Boekel. 2000. A review of Maillard reaction in food and implications to kinetic modelling. Trends in Food Science & Technology 11 (9–10):364–73. doi: 10.1016/S0924-2244(01)00022-X.
  • Massini, R., M. C. Nicoli, A. Cassara, and C. R. Lerici. 1990. Study on physical and physicochemical changes of coffee during roasting. Italian Journal of Food Science 2:123–30.
  • Mazor Jolić, S., I. R. Redovniković, K. Marković, Đ. I. Šipušić, and K. Delonga. 2011. Changes of phenolic compounds and antioxidant capacity in cocoa beans processing. International Journal of Food Science & Technology 46 (9):1793–800. doi: 10.1111/j.1365-2621.2011.02670.x.
  • Grassia, M., G. Salvatori, M. Roberti, D. Planeta, and L. Cinquanta. 2019. Polyphenols, methylxanthines, fatty acids and minerals in cocoa beans and cocoa products. Journal of Food Measurement and Characterization 13 (3):1721–8. doi: 10.1007/s11694-019-00089-5.
  • Michel, S., L. Franco-Baraka, A. J. Ibañez, and M. Mansurova. 2021. Mass spectrometry-based flavor monitoring of Peruvian chocolate fabrication process. Metabolites 11 (2):71. doi: 10.3390/metabo11020071.
  • Minifie, B. 1999. Chocolate, cocoa and confectionery: Science and technology, ed. Chapman & Hall Food Science Book. 3rd ed. Hayward, CA: Aspen Publishers, Inc.
  • Misnawi, Jinap, S., B. Jamilah, and S. Nazamid. 2003. Effects of incubation and polyphenol oxidase enrichment on colour, fermentation index, procyanidins and astringency of unfermented and partly fermented cocoa beans. International Journal of Food Science and Technology 38 (3):285–95. doi: 10.1046/j.1365-2621.2003.00674.x.
  • Mohamadi Alasti, F., N. Asefi, R. Maleki, and S. S. SeiiedlouHeris. 2019. Investigating the flavor compounds in the cocoa powder production process. Food Science & Nutrition 7 (12):3892–901. doi: 10.1002/fsn3.1244.
  • Nurhayati, N., F. M. C. S. Setyabudi, D. W. Marseno, and S. Supriyanto. 2019. The effects of roasting time of unfermented cocoa liquor using the oil bath methods on physicochemical properties and volatile compound profiles. agriTECH 39 (1):36–47. doi: 10.22146/agritech.33103.
  • Oliviero, T., E. Capuano, B. Cammerer, and V. Fogliano. 2009. Influence of roasting on the antioxidant activity and HMF formation of a cocoa bean model systems. Journal of Agricultural and Food Chemistry 57 (1):147–52. doi: 10.1021/jf802250j.
  • Oracz, J, and E. Nebesny. 2019. Effect of roasting parameters on the physicochemical characteristics of high-molecular-weight Maillard reaction products isolated from cocoa beans of different Theobroma cacao L. groups. European Food Research and Technology 245 (1):111–28. doi: 10.1007/s00217-018-3144-y.
  • Oracz, J., E. Nebesny, and D. Żyżelewicz. 2014. Effect of roasting conditions on the fat, tocopherol, and phytosterol content and antioxidant capacity of the lipid fraction from cocoa beans of different Theobroma cacao L. cultivars. European Journal of Lipid Science and Technology 116 (8):1002–14. doi: 10.1002/ejlt.201300474.
  • Oracz, J., E. Nebesny, and D. Żyżelewicz. 2019. Identification and quantification of free and bound phenolic compounds contained in the high-molecular weight melanoidin fractions derived from two different types of cocoa beans by UHPLC-DAD-ESI-HR-MS(n). Food Research International 115:135–49. doi: 10.1016/j.foodres.2018.08.028.
  • Owusu, M., M. A. Petersen, and H. Heimdal. 2012. Effect of fermentation method, roasting and conching conditions on the aroma volatiles of dark chocolate. Journal of Food Processing and Preservation 36 (5):446–56. doi: 10.1111/j.1745-4549.2011.00602.x.
  • Payne, M. J., W. J. Hurst, K. B. Miller, Craig Rank, and David A Stuart. 2010. Impact of fermentation, drying, roasting, and Dutch processing on epicatechin and catechin content of cacao beans and cocoa ingredients. Journal of Agricultural and Food Chemistry 58 (19): 10518–27. doi: 10.1021/jf102391q.
  • Peña-Correa, R. F., B. Ataç Mogol, M. Van Boekel, and V. Fogliano. 2022. Fluidized bed roasting of cocoa nibs speeds up processing and favors the formation of pyrazines. Innovative Food Science & Emerging Technologies 79:103062. doi: 10.1016/j.ifset.2022.103062.
  • Pramudita, D., T. Araki, Y. Sagara, and A. H. Tambunan. 2017. Roasting and colouring curves for coffee beans with broad time-temperature variations. Food and Bioprocess Technology 10 (8):1509–20. doi: 10.1007/s11947-017-1912-5.
  • Quiroz-Reyes, C. N, and V. Fogliano. 2018. Design cocoa processing towards healthy cocoa products: The role of phenolics and melanoidins. Journal of Functional Foods 45:480–90. doi: 10.1016/j.jff.2018.04.031.
  • Raters, M, and R. Matissek. 2018. Acrylamide in cocoa: A survey of acrylamide levels in cocoa and cocoa products sourced from the German market. European Food Research and Technology 244 (8):1381–8. doi: 10.1007/s00217-018-3051-2.
  • Redgwell, R. J., V. Trovato, and D. Curti. 2003. Cocoa bean carbohydrates: Roasting-induced changes and polymer interactions. Food Chemistry 80 (4):511–6. doi: 10.1016/S0308-8146(02)00320-5.
  • Reineccius, G. A., P. G. Keeney, and W. Weissberger. 1972. Factors affecting the concentration of pyrazines in cocoa beans. Journal of Agricultural and Food Chemistry 20 (2):202–6. doi: 10.1021/jf60180a032.
  • Robbins, R. J. 2003. Phenolic acids in foods: An overview of analytical methodology. Journal of Agricultural and Food Chemistry 51 (10):2866–87. doi: 10.1021/jf026182t.
  • Rohan, T. A, and T. J. Stewart. 1966. The precursors of chocolate aroma: Changes in the free amino acids during the roasting of cocoa beans. Journal of Food Science 31 (2):202–5. doi: 10.1111/j.1365-2621.1966.tb00479.x.
  • Rojas, M., A. Hommes, H. J. Heeres, and F. Chejne. 2022. Physicochemical phenomena in the roasting of cocoa (Theobroma cacao L.). Food Engineering Reviews 14 (3):509–33. doi: 10.1007/s12393-021-09301-z.
  • Rojo-Poveda, O., L. Barbosa-Pereira, G. Zeppa, and C. Stévigny. 2020. Cocoa bean shell—A by-product with nutritional properties and biofunctional potential. Nutrients 12 (4):1123. doi: 10.3390/nu12041123.
  • Ruan, D., H. Wang, and F. Cheng. 2018. The maillard reaction in food chemistry, ed. Cham Springer. Switzerland: Springer, Cham. Accessed July 29, 2020.
  • Rufian-Henares, J. A. 2016. Maillard reaction. In Encyclopedia of food and health, ed Elsevier, 593–600. Oxford, UK: Elsevier Ltd. doi: 10.1016/B978-0-12-384947-2.00435-9.
  • Sacchetti, G., F. Ioannone, M. De Gregorio, C. Di Mattia, M. Serafini, and D. Mastrocola. 2016. Non enzymatic browning during cocoa roasting as affected by processing time and temperature. Journal of Food Engineering 169:44–52. doi: 10.1016/j.jfoodeng.2015.08.018.
  • Santander Munoz, M., J. Rodriguez Cortina, F. E. Vaillant, and S. E. Parra. 2020. An overview of the physical and biochemical transformation of cocoa seeds to beans and to chocolate: Flavor formation. Critical Reviews in Food Science and Nutrition 60 (10):1593–613. doi: 10.1080/10408398.2019.1581726.
  • Scalone, G. L. L., T. Cucu, N. De Kimpe, and B. De Meulenaer. 2015. Influence of free amino acids, oligopeptides, and polypeptides on the formation of pyrazines in Maillard model systems. Journal of Agricultural and Food Chemistry 63 (22):5364–72. doi: 10.1021/acs.jafc.5b01129.
  • Schmitt, A, and A. Birkeneck. 1983. Proces for the continuous roasting of cocoa kernel paste. US Patent 438,9427. United States of America.
  • Somoza, V, and V. Fogliano. 2013. 100 years of the maillard reaction: Why our food turns brown. Journal of Agricultural and Food Chemistry 61 (43):10197. doi: 10.1021/jf403107k.
  • Stanley, T. H., C. B. Van Buiten, S. A. Baker, R. J. Elias, R. C. Anantheswaran, and J. D. Lambert. 2018. Impact of roasting on the flavan-3-ol composition, sensory-related chemistry, and in vitro pancreatic lipase inhibitory activity of cocoa beans. Food Chemistry 255:414–20. doi: 10.1016/j.foodchem.2018.02.036.
  • Stark, T., S. Bareuther, and T. Hofmann. 2005. Sensory-guided decomposition of roasted cocoa nibs (Theobroma cacao) and structure determination of taste-active polyphenols. Journal of Agricultural and Food Chemistry 53 (13):5407–18. doi: 10.1021/jf050457y.
  • Summa, C., J. McCourt, B. Cämmerer, A. Fiala, M. Probst, S. Kun, E. Anklam, and K. H. Wagner. 2008. Radical scavenging activity, antibacterial and mutagenic effects of cocoa bean Maillard reaction products with degree of roasting. Molecular Nutrition & Food Research 52 (3):342–51. doi: 10.1002/mnfr.200700403.
  • Surh, Y. J., A. Liem, J. A. Miller, and S. R. Tannenbaum. 1994. 5-Sulfooxymethylfurfural as a possible ultimate mutagenic and carcinogenic metabolite of the Maillard reaction product, 5-hydroxymethylfurfural. Carcinogenesis 15 (10):2375–7. doi: 10.1093/carcin/15.10.2375.
  • Tan, J, and W. L. Kerr. 2018. Determining degree of roasting in cocoa beans by artificial neural network (ANN)-based electronic nose system and gas chromatography/mass spectrometry (GC/MS). Journal of the Science of Food and Agriculture 98 (10):3851–9. doi: 10.1002/jsfa.8901.
  • Tena, N., A. Lobo-Prieto, R. Aparicio, and D. L. García-González. 2019. Storage and preservation of fats and oils. In Encyclopedia of food security and sustainability, ed. Elsevier, 605–618. Sevilla, Spain: Elsevier Inc. doi: 10.1016/b978-0-08-100596-5.22268-3.
  • Urbańska, B., and J. Kowalska. 2019. Comparison of the total polyphenol content and antioxidant activity of chocolate obtained from roasted and unroasted cocoa beans from different regions of the world. Antioxidants 8 (8):283. doi: 10.3390/antiox8080283.
  • Urbańska, B., D. Derewiaka, A. Lenart, and J. Kowalska. 2019. Changes in the composition and content of polyphenols in chocolate resulting from pre-treatment method of cocoa beans and technological process. European Food Research and Technology 245 (10):2101–12. doi: 10.1007/s00217-019-03333-w.
  • van Putten, R.-J., J. N. M. Soetedjo, E. A. Pidko, J. C. van der Waal, E. J. M. Hensen, E. de Jong, and H. J. Heeres. 2013. Dehydration of different ketoses and aldoses to 5-hydroxymethylfurfural. ChemSusChem. 6 (9):1681–7. doi: 10.1002/cssc.201300345.
  • Varnam, Alan, H, and J. P. Sutherland. 1994. Beverages: Technology, chemistry and microbiology, ed. B.V. Springer-Science + Business Media. UK: Chapman & Hall. https://books.google.nl/books?id=m0vaBwAAQBAJ&printsec=frontcover&hl=es&source=gbs_ge_summary_r&cad=0#v=onepage&q&f=false (accessed 07-07-2020).
  • Velasco, J, and C. Dobarganes. 2002. Oxidative stability of virgin olive oil. European Journal of Lipid Science and Technology 104 (9–10):661–76. doi: 10.1002/1438-9312(200210)104:9/10%3C661::AID-EJLT661%3E3.0.CO;2-D.
  • Wollgast, J, and E. Anklam. 2000. Review on polyphenols in Theobroma cacao: Changes in composition during the manufacture of chocolate and methodology for identification and quantification. Food Research International 33 (6):423–47. doi: 10.1016/S0963-9969(00)00068-5.
  • World Health Organization. 2006. Sixty-fourth report of the joint FAO/WHO expert committee on food additives (JECFA). In Evaluation of certain food contaminants, vol. 8. Genova, Italy: World Health Organization.
  • Zamora, R., C. M. Lavado-Tena, and F. J. Hidalgo. 2020. Oligomerization of reactive carbonyls in the presence of ammonia-producing compounds: A route for the production of pyridines in foods. Food Chemistry 304:125284. doi: 10.1016/j.foodchem.2019.125284.
  • Żyżelewicz, D., G. Budryn, W. Krysiak, J. Oracz, E. Nebesny, and M. Bojczuk. 2014. Influence of roasting conditions on fatty acid composition and oxidative changes of cocoa butter extracted from cocoa bean of Forastero variety cultivated in Togo. Food Research International 63 (C):328–43. doi: 10.1016/j.foodres.2014.04.053.
  • Żyżelewicz, D., W. Krysiak, E. Nebesny, and G. Budryn. 2014. Application of various methods for determination of the color of cocoa beans roasted under variable process parameters. European Food Research and Technology 238 (4):549–63. doi: 10.1007/s00217-013-2123-6.
  • Żyżelewicz, D., W. Krysiak, J. Oracz, D. Sosnowska, G. Budryn, and E. Nebesny. 2016. The influence of the roasting process conditions on the polyphenol content in cocoa beans, nibs and chocolates. Food Research International 89:918–29. doi: 10.1016/j.foodres.2016.03.026.
  • Żyżelewicz, D., J. Oracz, W. Krysiak, G. Budryn, and E. Nebesny. 2017. Effects of various roasting conditions on acrylamide, acrolein, and polycyclic aromatic hydrocarbons content in cocoa bean and the derived chocolates. Drying Technology 35 (3):363–74. doi: 10.1080/07373937.2016.1175470.
  • Zzaman, W., R. Bhat, T. A. Yang, and A. M. Easa. 2017. Influences of superheated steam roasting on changes in sugar, amino acid and flavour active components of cocoa bean (Theobroma cacao). Journal of the Science of Food and Agriculture 97 (13):4429–37. doi: 10.1002/jsfa.8302.
  • Zzaman, W, and T. A. Yang. 2013. Effect of superheated steam and convection roasting on changes in physical properties of cocoa bean (Theobroma cacao L.). Food Science and Technology Research 19 (2):181–6. doi: 10.3136/fstr.19.181.