1,266
Views
9
CrossRef citations to date
0
Altmetric
Reviews

Thermal properties of different types of starch: A review

, , , ORCID Icon, ORCID Icon & ORCID Icon

References

  • Adebowale, K. O., and O. S. Lawal. 2003. Functional properties and retrogradation behaviour of native and chemically modified starch of mucuna bean (Mucunapruriens). Journal of the Science of Food and Agriculture 83 (15):1541–6. doi: 10.1002/jsfa.1569.
  • Ali, N. M., N. Abdullah, S. H. Jong, N. Muhammad, and M. C. Tan. 2021. Effect of different banana pseudostem parts on their starch yield, morphology and thermal properties. In IOP Conference Series: Earth and Environmental Science (Vol. 736, No. 1, p. 012038). IOP Publishing. doi: 10.1088/1755-1315/736/1/012038.
  • Almeida, R. L. J., N. C. Santos, J. V. F. Feitoza, G. M. da Silva, C. E. d S. Muniz, R. d S. Eduardo, V. H. d A. Ribeiro, V. M. d A. Silva, and M. M. d A. Mota. 2022. Effect of heat-moisture treatment on the thermal, structural and morphological properties of Quinoa starch. Carbohydrate Polymer Technologies and Applications 3:100192. doi: 10.1016/j.carpta.2022.100192.
  • Alvarez-Ramirez, J., E. J. Vernon-Carter, H. Carrillo-Navas, and M. Meraz. 2018. Effects of cooking temperature and time on the color, morphology, crystallinity, thermal properties, starch-lipid ­complexes formation and rheological properties of roux. LWT 91:203–12. 10.1016/j.lwt.2018.01.038.
  • Amaya-Llano, S. L., A. L. Martínez-Alegría, J. J. Zazueta-Morales, and F. Martínez-Bustos. 2008. Acid thinned jicama and maize starches as fat substitute in stirred yogurt. LWT – Food Science and Technology 41 (7):1274–81. doi: 10.1016/j.lwt.2007.08.012.
  • Ashogbon, A. O., and E. T. Akintayo. 2014. Recent trend in the physical and chemical modification of starches from different botanical sources: A review. Starch – Stärke 66 (1-2):41–57. doi: 10.1002/star.201300106.
  • Ashwar, B. A., A. Gani, I. A. Wani, A. Shah, F. A. Masoodi, and D. C. Saxena. 2016. Production of resistant starch from rice by dual autoclaving-retrogradation treatment: Invitro digestibility, thermal and structural characterization. Food Hydrocolloids. 56:108–17. doi: 10.1016/j.foodhyd.2015.12.004.
  • Banura, S., R. Thirumdas, A. Kaur, R. R. Deshmukh, and U. S. Annapure. 2018. Modification of starch using low pressure radio frequency air plasma. LWT 89:719–24. doi: 10.1016/j.lwt.2017.11.056.
  • Bao, J., X. Zhou, Y. Hu, and Z. Zhang. 2022. Resistant starch content and physicochemical properties of non-waxy rice starches modified by pullulanase, heat-moisture treatment, and citric acid. Journal of Cereal Science 105:103472. doi: 10.1016/j.jcs.2022.103472.
  • Barbi, R. C. T., G. L. Teixeira, P. S. Hornung, S. Ávila, and R. Hoffmann-Ribani. 2017. Eriobotrya japonica seed as a new source of starch: Assessment of phenolic compounds, antioxidant activity, thermal, rheological and morphological properties. Food Hydrocolloids 77:646–658. doi: 10.1016/j.foodhyd.2017.11.006
  • Bello-Perez, L. A., P. C. Flores-Silva, E. Agama-Acevedo, and J. Tovar. 2020. Starch digestibility: Past, present, and future. Journal of the Science of Food and Agriculture 100 (14):5009–16. doi: 10.1002/jsfa.8955.
  • Bhupender, S. K., B. Rajneesh, and S. Y. Baljeet. 2013. Physicochemical, functional, thermal and pasting properties of starches isolated from pearl millet cultivars. International Food Research Journal 20 (4):1555–1561.
  • Blanshard, J. M. V. 1987. Starch granule structure and function: A physicochemical approach. In Starch properties and potential, critical reports on applied chemistry, ed. T. Gaillard, 16–54. New York: John Wiley & Sons.
  • Cahyana, Y., R. Titipanillah, E. Mardawati, E. Sukarminah, T. Rialita, R. Andoyo, M. Djali, I.-I. Hanidah, I. S. Setiasih, and K. Handarini. 2018. Non-starch contents affect the susceptibility of banana starch and flour to ozonation. Journal of Food Science and Technology 55 (5):1726–33. doi: 10.1007/s13197-018-3085-2.
  • Carson, J. K., S. J. Lovatt, D. J. Tanner, and A. C. Cleland. 2004. Experimental measurements of the effective thermal conductivity of a pseudo-porous food analogue over a range of porosities and mean pore sizes. Journal of Food Engineering 63 (1):87–95. doi: 10.1016/S0260-8774(03)00286-3.
  • Castro, L. M., E. M. Alexandre, J. A. Saraiva, and M. Pintado. 2020. Impact of high pressure on starch properties: A review. Food Hydrocolloids. 106:105877. doi: 10.1016/j.foodhyd.2020.105877.
  • Cervantes-Ramírez, J. E., A. H. Cabrera-Ramirez, E. Morales-Sánchez, M. E. Rodriguez-García, M. de la, L. Reyes-Vega, A. K. Ramírez-Jiménez, and M. Gaytán-Martínez. 2020. Amylose-lipid complex formation from extruded maize starch mixed with fatty acids. Carbohydrate Polymers 246:116555.
  • Chakraborty, I., S. S. Mal, U. C. Paul, M. Rahman, and N. Mazumder. 2022. An insight into the gelatinization properties influencing the modified starches used in food industry: a review. Food and Bioprocess Technology 15: 1195–1223. doi: 10.1007/s11947-022-02761-z.
  • Chang, R., N. Ji, M. Li, L. Qiu, C. Sun, X. Bian, H. Qiu, L. Xiong, and Q. Sun. 2019. Green preparation and characterization of starch nanoparticles using a vacuum cold plasma process combined with ultrasonication treatment. Ultrasonics Sonochemistry 58:104660.
  • Chatakanonda, P., S. Varavinit, and P. Chinachoti. 2000. Effect of crosslinking on thermal and microscopic transitions of rice starch. LWT – Food Science and Technology 33 (4):276–84. doi: 10.1006/fstl.2000.0662.
  • Chen, P., Y. Zhang, Q. Qiao, X. Tao, P. Liu, and F. Xie. 2021. Comparison of the structure and properties of hydroxypropylated acid-hydrolysed maize starches with different amylose/amylopectin contents. Food Hydrocolloids 110:106134. doi: 10.1016/j.foodhyd.2020.106134.
  • Chen, X., X. He, and Q. Huang. 2014. Effects of hydrothermal pretreatment on subsequent octenylsuccinic anhydride (OSA) modification of cornstarch. Carbohydrate Polymers 101:493–8. doi: 10.1016/j.carbpol.2013.09.079.
  • Chen, Y., X. Xiong, and Q. Gao. 2018. Digestibility and physicochemical properties of starch-galactomannan complexes by heat-moisture treatment. Food Hydrocolloids 77:853–62. doi: 10.1016/j.foodhyd.2017.11.029.
  • Chen, Y., Y. She, R. Zhang, J. Wang, X. Zhang, and X. Gou. 2020. Use of starch‐based fat replacers in foods as a strategy to reduce dietary intake of fat and risk of metabolic diseases. Food Science & Nutrition 8 (1):16–22. doi: 10.1002/fsn3.1303.
  • Chi, C., X. Li, P. Lu, S. Miao, Y. Zhang, and L. Chen. 2019. Dry heating and annealing treatment synergistically modulate starch structure and digestibility. International Journal of Biological Macromolecules 137:554–61. doi: 10.1016/j.ijbiomac.2019.06.137.
  • Choi, S. G., and W. L. Kerr. 2004. Swelling characteristics of native and chemically modified wheat starches as a function of heating temperature and time. Starch – Stärke 56 (5):181–9. doi: 10.1002/star.200300233.
  • Chun, A., H. J. Lee, B. R. Hamaker, and S. Janaswamy. 2015. Effects of ripening temperature on starch structure and gelatinization, pasting, and cooking properties in rice (Oryza sativa). Journal of Agricultural and Food Chemistry 63 (12):3085–93. doi: 10.1021/jf504870p.
  • Chung, H. J., K. S. Woo, and S. T. Lim. 2004. Glass transition and enthalpy relaxation of cross-linked corn starches. Carbohydrate Polymers 55 (1):9–15. doi: 10.1016/j.carbpol.2003.04.002.
  • Cira‐Chávez, L. A., L. E. Gassós‐Ortega, N. L. García‐Encinas, M. Castillo‐Zamora, S. Ruíz‐Cruz, L. A. Bello‐Pérez, and M. I. Estrada‐Alvarado. 2021. Morphological, thermal, and rheological properties of starch from potatoes grown in mexico. Starch – Stärke 73 (1-2):2000049. doi: 10.1002/star.202000049.
  • Colussi, R., L. Kaur, E. da Rosa Zavareze, A. R. G. Dias, R. B. Stewart, and J. Singh. 2018. High pressure processing and retrogradation of potato starch: Influence on functional properties and gastro-small intestinal digestion in vitro. Food Hydrocolloids 75:131–7. doi: 10.1016/j.foodhyd.2017.09.004.
  • Cordeiro, M. J. M., C. M. Veloso, L. S. Santos, R. C. F. Bonomo, M. Caliari, and R. D. C. I. Fontan. 2018. The impact of heat-moisture treatment on the properties of Musa paradisiaca L. starch and optimization of process variables. Food Technology and Biotechnology 56 (4):506–15. doi: 10.17113/ftb.56.04.18.5490.
  • de Siqueira, G. L. d A., A. C. da Silveira, S. R. d S. Lazzarotto, R. C. B. de Godoy, E. Schnitzler, and M. Lazzarotto. 2019. Hydrolysis of the low gelatinization temperature Araucaria angustifolia pine seed starch: Thermal, rheological and structural properties. Journal of Thermal Analysis and Calorimetry 138 (2):1269–78. doi: 10.1007/s10973-019-08180-1.
  • Deng, F., Q. Li, H. Chen, Y. Zeng, B. Li, X. Zhong, L. Wang, and W. Ren. 2021. Relationship between chalkiness and the structural and thermal properties of rice starch after shading during grain-filling stage. Carbohydrate Polymers 252:117212.
  • Dewi, A., M. P. U. Santoso, Y. Pranoto, and D. W. Marseno. 2022. Dual modification of sago starch via heat moisture treatment and octenyl succinylation to improve starch hydrophobicity. Polymers 14 (6):1086. doi: 10.3390/polym14061086.
  • Dickerson, R. W. 1965. An apparatus for the measurement of thermal diffusivity of foods. Food Technology 19 (5):198–204.
  • Djori, A, and N. Moulai-Mostefa. 2022. Structural, physicochemical and thermal properties of OSA-modified waxy maize starch. Kemija u Industriji 71 (1-2):39–47. doi: 10.15255/KUI.2021.005.
  • Donaldson, A. B., and R. E. Taylor. 1975. Thermal diffusivity measurement by a radial heat flow method. Journal of Applied Physics 46 (10):4584–9. doi: 10.1063/1.321399.
  • Dong, H., and T. Vasanthan. 2020. Effect of phosphorylation techniques on structural, thermal, and pasting properties of pulse starches in comparison with corn starch. Food Hydrocolloids. 109:106078. doi: 10.1016/j.foodhyd.2020.106078.
  • Dos Santos, T. P. R., C. M. L. Franco, E. L. do Carmo, J. L. Jane, and M. Leonel. 2019. Effect of spray-drying and extrusion on physicochemical characteristics of sweet potato starch. Journal of Food Science and Technology 56 (1):376–83. doi: 10.1007/s13197-018-3498-y.
  • Falsafi, S. R., Y. Maghsoudlou, H. Rostamabadi, M. M. Rostamabadi, H. Hamedi, and S. M. H. Hosseini. 2019. Preparation of physically modified oat starch with different sonication treatments. Food Hydrocolloids. 89:311–20. doi: 10.1016/j.foodhyd.2018.10.046.
  • Felisberto, M. H. F., A. L. Beraldo, M. S. Costa, F. V. Boas, C. M. L. Franco, and M. T. P. S. Clerici. 2019. Physicochemical and structural properties of starch from young bamboo culm of Bambusa tuldoides. Food Hydrocolloids. 87:101–7. doi: 10.1016/j.foodhyd.2018.07.032.
  • Fitch, A. L. 1935. A new thermal conductivity apparatus. American Journal of Physics 3 (3):135–6. doi: 10.1119/1.1992954.
  • Fitch-Vargas, P. R., I. L. Camacho-Hernández, F. Martínez-Bustos, A. R. Islas-Rubio, K. I. Carrillo-Cañedo, A. Calderón-Castro, N. Jacobo-Valenzuela, A. Carrillo-López, C. I. Delgado-Nieblas, and E. Aguilar-Palazuelos. 2019. Mechanical, physical and microstructural properties of acetylated starch-based biocomposites reinforced with acetylated sugarcane fiber. Carbohydrate Polymers 219:378–86. doi: 10.1016/j.carbpol.2019.05.043.
  • Fu, Z., L. Zhang, M. H. Ren, and J. N. BeMiller. 2019. Developments in hydroxypropylation of starch: A review. Starch – Stärke 71 (1-2):1800167. doi: 10.1002/star.201800167.
  • Fuentes, C., D. Perez-Rea, B. Bergenståhl, S. Carballo, M. Sjöö, and L. Nilsson. 2019. Physicochemical and structural properties of starch from five Andean crops grown in Bolivia. International Journal of Biological Macromolecules 125:829–38. doi: 10.1016/j.ijbiomac.2018.12.120.
  • Fuentes-Zaragoza, E., M. J. Riquelme-Navarrete, E. Sánchez-Zapata, and J. A. Pérez-Álvarez. 2010. Resistant starch as functional ingredient: A review. Food Research International 43 (4):931–42. doi: 10.1016/j.foodres.2010.02.004.
  • Gao, L., W. Bai, M. Xia, C. Wan, M. Wang, P. Wang, X. Gao, and J. Gao. 2021. Diverse effects of nitrogen fertilizer on the structural, pasting, and thermal properties of common buckwheat starch. International Journal of Biological Macromolecules 179:542–9. doi: 10.1016/j.ijbiomac.2021.03.045.
  • Gao, S., H. Liu, L. Sun, J. Cao, J. Yang, M. Lu, and M. Wang. 2021. Rheological, thermal and in vitro digestibility properties on complex of plasma modified Tartary buckwheat starches with quercetin. Food Hydrocolloids. 110:106209. doi: 10.1016/j.foodhyd.2020.106209.
  • George, J., S. G. Nair, R. Kumar, A. D. Semwal, C. Sudheesh, A. Basheer, and K. V. Sunooj. 2021. A new insight into the effect of starch nanocrystals in the retrogradation properties of starch. Food Hydrocolloids for Health 1:100009. doi: 10.1016/j.fhfh.2021.100009.
  • González-Cruz, L., J. L. Montañez-Soto, E. Conde-Barajas, M. D. L. L. X. Negrete, A. Flores-Morales, and A. Bernardino-Nicanor. 2018. Spectroscopic, calorimetric and structural analyses of the effects of hydrothermal treatment of rice beans and the extraction solvent on starch characteristics. International Journal of Biological Macromolecules 107 (Pt A):965–72. doi: 10.1016/j.ijbiomac.2017.09.074.
  • Govindaraju, I., G.-Y. Zhuo, I. Chakraborty, S. K. Melanthota, S. S. Mal, B. Sarmah, V. J. Baruah, K. K. Mahato, and N. Mazumder. 2021. Investigation of structural and physico-chemical properties of rice starch with varied amylose content: A combined microscopy, spectroscopy, and thermal study. Food Hydrocolloids 122: 107093. doi: 10.1016/j.foodhyd.2021.107093.
  • Guo, Z., Q. Gou, L. Yang, Q. Yu, and L. Han. 2022. Dielectric barrier discharge plasma: A green method to change structure of potato starch and improve physicochemical properties of potato starch films. Food Chemistry 370:130992. doi: 10.1016/j.foodchem.2021.130992.
  • Guo, Z., X. Li, D. Yang, A. Lei, and F. Zhang. 2022. Structural and functional properties of chestnut starch based on high-pressure homogenization. LWT 154:112647. doi: 10.1016/j.lwt.2021.112647.
  • Haas, E., and G. Felsenstein. 1978. Methods used to the thermal properties of fruits and vegetables. Special Publication (103).
  • Handarini, K., J. S. Hamdani, Y. Cahyana, and I. S. Setiasih. 2020. Gaseous ozonation at low concentration modifies functional, pasting, and thermal properties of arrowroot starch (Maranta arundinaceae). Starch – Stärke 72 (5-6):1900106. doi: 10.1002/star.201900106.
  • Himashree, P., A. S. Sengar, and C. K. Sunil. 2022. Food thickening agents: Sources, chemistry, properties and applications-A review. International Journal of Gastronomy and Food Science 27:100468. doi: 10.1016/j.ijgfs.2022.100468.
  • Hódsági, M., A. Jámbor, E. Juhász, S. Gergely, T. Gelencsér, and A. Salgó. 2012. Effects of microwave heating on native and resistant starches. Acta Alimentaria 41 (2):233–47. doi: 10.1556/AAlim.41.2012.2.10.
  • Hoover, R., T. Hughes, H. J. Chung, and Q. Liu. 2010. Composition, molecular structure, properties, and modification of pulse starches: A review. Food Research International 43 (2):399–413. doi: 10.1016/j.foodres.2009.09.001.
  • Hoover, R., Y. X. Li, G. Hynes, and N. Senanayake. 1997. Physicochemical characterization of mung bean starch. Food Hydrocolloids. 11 (4):401–8. doi: 10.1016/S0268-005X(97)80037-9.
  • Hu, A., Y. Li, and J. Zheng. 2019. Dual-frequency ultrasonic effect on the structure and properties of starch with different size. LWT 106:254–62. doi: 10.1016/j.lwt.2019.02.040.
  • Hussain, S., A. A. Mohamed, M. S. Alamri, M. A. Ibraheem, A. A. A. Qasem, S. A. Shahzad, and I. A. Ababtain. 2020. Use of gum cordia (cordia myxa) as a natural starch modifier; effect on pasting, thermal, textural, and rheological properties of corn starch. Foods 9 (7):909. doi: 10.3390/foods9070909.
  • Irani, M., E. S. M. Abdel, Aal, S. Razavi, P. Hucl, and C. A. Patterson. 2017. Thermal and functional properties of hairless canary seed (Phalaris canariensis L.) starch in comparison with wheat starch. Cereal Chemistry Journal 94 (2):341–8. doi: 10.1094/CCHEM-04-16-0083-R.
  • Jacobs, H., and J. A. Delcour. 1998. Hydrothermal modifications of granular starch, with retention of the granular structure: A review. Journal of Agricultural and Food Chemistry 46 (8):2895–905. doi: 10.1021/jf980169k.
  • Jane, J. J. M S. 1995. Starch properties, modifications, and applications. Journal of Macromolecular Science, Part A: Pure and Applied Chemistry 32 (4):751–7. doi: 10.1080/10601329508010286.
  • Javadian, N., A. Mohammadi Nafchi, and M. Bolandi. 2021. The effects of dual modification on functional, microstructural, and thermal properties of tapioca starch. Food Science & Nutrition 9 (10):5467–76. doi: 10.1002/fsn3.2506.
  • Jing, L., C. Chen, Q. Lu, Y. Wang, J. Zhu, S. Lai, Y. Wang, and L. Yang. 2021. How do elevated atmosphere CO2 and temperature alter the physiochemical properties of starch granules and rice taste? The Science of the Total Environment 766:142592.
  • Keskin, S. O., T. M. Ali, J. Ahmed, M. Shaikh, M. Siddiq, and M. A. Uebersax. 2022. Physico‐chemical and functional properties of legume protein, starch, and dietary fiber—A review. Legume Science 4 (1):e117. doi: 10.1002/leg3.117.
  • Khushbu, S., C. K. Sunil, D. V. Chidanand, and R. Jaganmohan. 2020. Effect of particle size on compositional, structural, rheological, and thermal properties of shallot flour as a source of thickening agent. Journal of Food Process Engineering 43 (3):e13237. doi: 10.1111/jfpe.13237.
  • Klein, B., N. L. Vanier, K. Moomand, V. Z. Pinto, R. Colussi, E. da Rosa Zavareze, and A. R. G. Dias. 2014. Ozone oxidation of cassava starch in aqueous solution at different pH. Food Chemistry 155:167–73. doi: 10.1016/j.foodchem.2014.01.058.
  • Kringel, D. H., A. R. G. Dias, E. D. R. Zavareze, and E. A. Gandra. 2020. Fruit wastes as promising sources of starch: Extraction, properties, and applications. Starch – Stärke 72 (3-4):1900200. doi: 10.1002/star.201900200.
  • Kuakpetoon, D., and Y. J. Wang. 2001. Characterization of different starches oxidized by hypochlorite. Starch – Stärke 53 (5):211–8. doi: 10.1002/1521-379X(200105)53:5<211::AID-STAR211>3.0.CO;2-M.
  • Kumar, R., and B. S. Khatkar. 2017. Thermal, pasting and morphological properties of starch granules of wheat (Triticum aestivum L.) varieties. Journal of Food Science and Technology 54 (8):2403–10. doi: 10.1007/s13197-017-2681-x.
  • Kumari, S., B. S. Yadav, and R. B. Yadav. 2022. Effect of nano-conversion on morphological, rheological and thermal properties of barley starch. Journal of Food Science and Technology 59 (2):467–77. doi: 10.1007/s13197-021-05029-0.
  • Kunyanee, K., and N. Luangsakul. 2022. The impact of heat moisture treatment on the physicochemical properties and in vitro glycemic index of rice flour with different amylose contents and associated effects on rice dumpling quality. LWT 154:112694. doi: 10.1016/j.lwt.2021.112694.
  • Lan, Y., Q. Fang, M. F. Kocher, and M. A. Hanna. 2000. Thermal properties of tapioca starch. International Journal of Food Properties 3 (1):105–16. doi: 10.1080/10942910009524619.
  • Lee, S. J., Y. J. Yang, H. J. Chung, and S. T. Lim. 2017. Effect of dry heating on physicochemical properties of pregelatinized rice starch. Cereal Chemistry 94 (6):928–33.
  • Lei, N., S. Chai, M. Xu, J. Ji, H. Mao, S. Yan, Y. Gao, H. Li, J. Wang, and B. Sun. 2020. Effect of dry heating treatment on multi-levels of structure and physicochemical properties of maize starch: A thermodynamic study. International Journal of Biological Macromolecules 147:109–16. doi: 10.1016/j.ijbiomac.2020.01.060.
  • Li, G., and F. Zhu. 2018. Effect of high pressure on rheological and thermal properties of quinoa and maize starches. Food Chemistry 241:380–6. doi: 10.1016/j.foodchem.2017.08.088.
  • Li, S., Y. Zhang, Y. Wei, W. Zhang, and B. Zhang. 2014. Thermal, pasting and gel textural properties of commercial starches from different botanical sources. Journal of Bioprocessing & Biotechniques 4 (4):1.
  • Li, W., C. Li, Z. Gu, Y. Qiu, L. Cheng, Y. Hong, and Z. Li. 2016. Retrogradation behavior of corn starch treated with 1, 4-α-glucan branching enzyme. Food Chemistry 203:308–13. doi: 10.1016/j.foodchem.2016.02.059.
  • Li, Y., L. Zhao, L. Shi, L. Lin, Q. Cao, and C. Wei. 2022. Sizes, components, crystalline structure, and thermal properties of starches from sweet potato varieties originating from different countries. Molecules 27 (6):1905. doi: 10.3390/molecules27061905.
  • Lindeboom, N., P. R. Chang, and R. T. Tyler. 2004. Analytical, biochemical and physicochemical aspects of starch granule size, with emphasis on small granule starches: A review. Starch – Stärke 56 (34):89–99. doi: 10.1002/star.200300218.
  • Liu, K., Y. Hao, Y. Chen, and Q. Gao. 2019. Effects of dry heat treatment on the structure and physicochemical properties of waxy potato starch. International Journal of Biological Macromolecules 132:1044–50. doi: 10.1016/j.ijbiomac.2019.03.146.
  • Liu, M., N.-N. Wu, G.-P. Yu, X.-T. Zhai, X. Chen, M. Zhang, X.-H. Tian, Y.-X. Liu, L.-P. Wang, and B. Tan. 2018. Physicochemical properties, structural properties, and in vitro digestibility of pea starch treated with high hydrostatic pressure. Starch – Stärke 70 (1-2):1700082. doi: 10.1002/star.201700082.
  • Los, F. G. B., A. Chezini, C. S. Piroski, L. G. Lacerda, A. Nogueira, and I. M. Demiate. 2022. Evaluation of physicochemical properties of starch from brazilian carioca beans (Phaseolus vulgaris). Starch – Stärke 74 (1-2):2000281. doi: 10.1002/star.202000281.
  • Lv, Q.-Q., G.-Y. Li, Q.-T. Xie, B. Zhang, X.-M. Li, Y. Pan, and H.-Q. Chen. 2018. Evaluation studies on the combined effect of hydrothermal treatment and octenyl succinylation on the physic-chemical, structural and digestibility characteristics of sweet potato starch. Food Chemistry 256:413–8. doi: 10.1016/j.foodchem.2018.02.147.
  • Ma, H., M. Liu, Y. Liang, X. Zheng, L. Sun, W. Dang, J. Li, L. Li, and C. Liu. 2022. Research progress on properties of pre-gelatinized starch and its application in wheat flour products. Grain & Oil Science and Technology 5 (2):87–97. doi: 10.1016/j.gaost.2022.01.001.
  • Maniglia, B. C., N. Castanha, P. Le Bail, A. Le Bail, and P. E. Augusto. 2021. Starch modification through environmentally friendly alternatives: A review. Critical Reviews in Food Science and Nutrition 61 (15):2482–505. doi: 10.1080/10408398.2020.1778633.
  • Martínez, M. M., C. M. Rosell, and M. Gómez. 2014. Modification of wheat flour functionality and digestibility through different extrusion conditions. Journal of Food Engineering 143:74–9. doi: 10.1016/j.jfoodeng.2014.06.035.
  • Mehfooz, T., T. M. Ali, and A. Hasnain. 2019. Effect of cross-linking on characteristics of succinylated and oxidized barley starch. Journal of Food Measurement and Characterization 13 (2):1058–69. doi: 10.1007/s11694-018-00021-3.
  • Mohamed, A., S. Hussain, M. S. Alamri, M. A. Ibraheem, A. A. A. Qasem, and I. A. Ababtain. 2022. Physicochemical properties of starch binary mixtures with cordia and ziziphus gums. Processes 10 (2):180. doi: 10.3390/pr10020180.
  • Mohsenin, N. N. 1980. Thermal properties of foods and agricultural materials. Gordon and Breach, Science Publishers, Inc. New York, NY10016.
  • Molavi, H., S. M. A. Razavi, and R. Farhoosh. 2018. Impact of hydrothermal modifications on the physicochemical, morphology, crystallinity, pasting and thermal properties of acorn starch. Food Chemistry 245:385–93. doi: 10.1016/j.foodchem.2017.10.117.
  • Mollekopf, N., K. Treppe, P. Fiala, and O. Dixit. 2011. Vacuum microwave treatment of potato starch and the resultant modification of properties. Chemie Ingenieur Technik 83 (3):262–72. doi: 10.1002/cite.201000105.
  • Nakthong, N., R. Wongsagonsup, and T. Amornsakchai. 2017. Characteristics and potential utilizations of starch from pineapple stem waste. Industrial Crops and Products 105:74–82. doi: 10.1016/j.indcrop.2017.04.048.
  • Nix, G. H., G. W. Lowery, R. I. Vachon, and G. E. Tanger. 1967. Direct determination of thermal diffusivity and conductivity with a refined line-source technique. In Progress in aeronautics and astronautics: Thermophysics of spacecraft and planetary bodies, ed. G. Heller, Vol. 20, 865–78. New York: Academic Press.
  • Ohlsson, T. 1983. The measurement of thermal properties. In Physical properties of foods, R. Jowitt, London: Applied Science.
  • Okyere, A. Y., S. Rajendran, and G. A. Annor. 2022. Cold plasma technologies: Their effect on starch properties and industrial scale-up for starch modification. Current Research in Food Science 5:451–63. doi: 10.1016/j.crfs.2022.02.007.
  • Oyeyinka, S. A., E. Umaru, S. J. Olatunde, and J. K. Joseph. 2019. Effect of short microwave heating time on physicochemical and functional properties of Bambara groundnut starch. Food Bioscience 28:36–41. doi: 10.1016/j.fbio.2019.01.005.
  • Pérez-Donado, C. E., F. Pérez-Muñoz, and R. N. Chávez-Jáuregui. 2021. Physicochemical and thermal characterization of starch from three different plantain cultivars in Puerto Rico. International Journal of Nutrition and Food Engineering 15 (9):288–92.
  • Pinto, V. Z., K. Moomand, V. G. Deon, B. Biduski, E. d R. Zavareze, G. C. Lenhani, G. H. Fidelis dos Santos, L. ‐T. Lim, and A. R. G. Dias. 2021. Effect of Physical pretreatments on the hydrolysis kinetic, structural, and thermal properties of Pinhão Starch nanocrystals. Starch – Stärke 73 (7-8):2000008. 2000008. doi: 10.1002/star.202000008.
  • Pycia, K., D. Gałkowska, L. Juszczak, T. Fortuna, and T. Witczak. 2015. Physicochemical, thermal and rheological properties of starches isolated from malting barley varieties. Journal of Food Science and Technology 52 (8):4797–807. doi: 10.1007/s13197-014-1531-3.
  • Rahman, M. H., T. H. Mu, M. Zhang, M. M. Ma, and H. N. Sun. 2020. Comparative study of the effects of high hydrostatic pressure on physicochemical, thermal, and structural properties of maize, potato, and sweet potato starches. Journal of Food Processing and Preservation 44 (11): e14852. doi: 10.1111/jfpp.14852.
  • Rajan, A, and T. E. Abraham. 2006. Enzymatic modification of cassava starch by bacterial lipase. Bioprocess and Biosystems Engineering 29 (1):65–71. doi: 10.1007/s00449-006-0060-5.
  • Reddy, C. K., S. Pramila, and S. Haripriya. 2015. Pasting, textural and thermal properties of resistant starch prepared from potato (Solanum tuberosum) starch using pullulanase enzyme. Journal of Food Science and Technology 52 (3):1594–601. doi: 10.1007/s13197-013-1151-3.
  • Rostamabadi, H., S. R. Falsafi, and S. M. Jafari. 2019. Starch-based nanocarriers as cutting-edge natural cargos for nutraceutical delivery. Trends in Food Science & Technology 88:397–415. doi: 10.1016/j.tifs.2019.04.004.
  • Shah, A., F. A. Masoodi, A. Gani, and B. Ashwar. 2018. Dual enzyme modified oat starch: Structural characterisation, rheological properties, and digestibility in simulated GI tract. International Journal of Biological Macromolecules 106:140–7. doi: 10.1016/j.ijbiomac.2017.08.013.
  • Shahzad, S., A. S. Hussain, M. S. Alamri, A. A. Mohamed, A. S. Ahmed, M. A. Ibraheem, and A. A. Abdo Qasem. 2019. Use of hydrocolloid gums to modify the pasting, thermal, rheological, and textural properties of sweet potato starch. International Journal of Polymer Science 2019:1–11. doi: 10.1155/2019/6308591.
  • Sharma, V., M. Kaur, K. S. Sandhu, S. Kaur, and M. Nehra. 2021. Barnyard millet starch cross-linked at varying levels by sodium trimetaphosphate (STMP): Film forming, physico-chemical, pasting and thermal properties. Carbohydrate Polymer Technologies and Applications 2:100161. doi: 10.1016/j.carpta.2021.100161.
  • Shi, Y.-C. 2008. Two- and Multi-Step Annealing of Cereal Starches in Relation to Gelatinization. Journal of Agricultural and Food Chemistry 56 (3):1097–104. doi: 10.1021/jf072449i.
  • Shi, L., Y. Li, L. Lin, X. Bian, and C. Wei. 2021. Effects of variety and growing location on physicochemical properties of starch from sweet potato root tuber. Molecules 26 (23):7137. doi: 10.3390/molecules26237137.
  • Shi, M., Z. Zhang, S. Yu, K. Wang, R. G. Gilbert, and Q. Gao. 2014. Pea starch (Pisum sativum L.) with slow digestion property produced using β-amylase and transglucosidase. Food Chemistry 164:317–23.
  • Sifuentes-Nieves, I., G. Mendez-Montealvo, P. C. Flores-Silva, M. Nieto-Pérez, G. Neira-Velazquez, O. Rodriguez-Fernandez, E. Hernández-Hernández, and G. Velazquez. 2021. Dielectric barrier discharge and radio-frequency plasma effect on structural properties of starches with different amylose content. Innovative Food Science & Emerging Technologies 68:102630. doi: 10.1016/j.ifset.2021.102630.
  • Singh, J., L. Kaur, and O. J. McCarthy. 2007. Factors influencing the physico-chemical, morphological, thermal and rheological properties of some chemically modified starches for food applications—A review. Food Hydrocolloids. 21 (1):1–22. doi: 10.1016/j.foodhyd.2006.02.006.
  • Singh, N., J. Singh, L. Kaur, N. S. Sodhi, and B. S. Gill. 2003. Morphological, thermal and rheological properties of starches from different botanical sources. Food Chemistry 81 (2):219–31. doi: 10.1016/S0308-8146(02)00416-8.
  • Song, H. 2010. Synthesis and application of cationic starch graft polymer by using the complex initiation system. Carbohydrate Polymers 82 (3):768–71. doi: 10.1016/j.carbpol.2010.05.049.
  • Stephen, A. M., and G. O. Phillips. 2016. Food polysaccharides and their applications. CRC Press, Boca Raton. doi: 10.1201/9781420015164.
  • Su, H., J. Tu, M. Zheng, K. Deng, S. Miao, S. Zeng, B. Zheng, and X. Lu. 2020. Effects of oligosaccharides on particle structure, pasting and thermal properties of wheat starch granules under different freezing temperatures. Food Chemistry 315:126209.
  • Sukhija, S., S. Singh, and C. S. Riar. 2016. Effect of oxidation, cross-linking and dual modification on physicochemical, crystallinity, morphological, pasting and thermal characteristics of elephant foot yam (Amorphophallus paeoniifolius) starch. Food Hydrocolloids. 55:56–64. doi: 10.1016/j.foodhyd.2015.11.003.
  • Sweat, V. E. 1995. Thermal properties of foods. In Engineering Properties of Foods, eds. M. A. Rao and S. S. H. Rizvi, 2nd ed., 99–138. New York: Marcel Dekker.
  • Tagliapietra, B. L., M. H. F. Felisberto, E. A. Sanches, P. H. Campelo, and M. T. P. S. Clerici. 2021. Non-conventional starch sources. Current Opinion in Food Science 39:93–102. doi: 10.1016/j.cofs.2020.11.011.
  • Takegoshi, E., S. Imura, Y. Hirasawa, and T. Takenaka. 1982. A method of measuring the thermal conductivity of solid materials by transient hot wire method of comparison. Bulletin of JSME 25 (201):395–402. doi: 10.1299/jsme1958.25.395.
  • Tester, R. F., and W. R. Morrison. 1990. Swelling and gelatinization of cereal starches. I. Effects of amylopectin, amylose, and lipids. Cereal Chemistry 67 (6):551–7.
  • Thirathumthavorn, D., and S. Charoenrein. 2005. Thermal and Pasting properties of Acidtreated Rice starches. Starch 57 (5):217–222. doi: 10.1002/star.200400332.
  • Thirumdas, R., D. Kadam, and U. S. Annapure. 2017. Cold plasma: An alternative technology for the starch modification. Food Biophysics 12 (1):129–39. doi: 10.1007/s11483-017-9468-5.
  • Thomaz, L., V. C. Ito, L. C. Malucelli, M. A. da Silva Carvalho Filho, I. M. Demiate, C. D. Bet, M. T. Marinho, E. Schnitzler, and L. G. Lacerda. 2020. Effects of dual modification on thermal, structural and pasting properties of taro (Colocasia esculenta L.) starch. Journal of Thermal Analysis and Calorimetry 139 (5):3123–32. doi: 10.1007/s10973-019-08728-1.
  • Vermeylen, R., B. Goderis, and J. A. Delcour. 2006. An X-ray study of hydrothermally treated potato starch. Carbohydrate Polymers 64 (2):364–75. doi: 10.1016/j.carbpol.2005.12.024.
  • Villanueva, M., F. Ronda, T. Moschakis, A. Lazaridou, and C. G. Biliaderis. 2018. Impact of acidification and protein fortification on thermal properties of rice, potato and tapioca starches and rheological behaviour of their gels. Food Hydrocolloids 79:20–9. doi: 10.1016/j.foodhyd.2017.12.022.
  • Voudouris, N., and K. Hayakawa. 1994. Simultaneous determination of thermal conductivity and diffusivity of foods using a point heat source probe: A theoretical analysis. LWT – Food Science and Technology 27 (6):522–32. doi: 10.1006/fstl.1994.1104.
  • Wang, M., Q. Shen, L. Hu, Y. Hu, X. Ye, D. Liu, and J. Chen. 2018. Physicochemical properties, structure and in vitro digestibility on complex of starch with lotus (Nelumbo nucifera Gaertn.) leaf flavonoids. Food Hydrocolloids 81:191–9. doi: 10.1016/j.foodhyd.2018.02.020.
  • Wang, Q., L. Li, and X. Zheng. 2020. A review of milling damaged starch: Generation, measurement, functionality and its effect on starch-based food systems. Food Chemistry 315:126267. doi: 10.1016/j.foodchem.2020.126267.
  • Wang, S., J. Wang, S. Wang, and S. Wang. 2017. Annealing improves paste viscosity and stability of starch. Food Hydrocolloids 62:203–11. doi: 10.1016/j.foodhyd.2016.08.006.
  • Wang, Z., S. Ma, B. Sun, F. Wang, J. Huang, X. Wang, and Q. Bao. 2021. Effects of thermal properties and behavior of wheat starch and gluten on their interaction: A review. International Journal of Biological Macromolecules 177:474–84. doi: 10.1016/j.ijbiomac.2021.02.175.
  • Wongsagonsup, R., T. Pujchakarn, S. Jitrakbumrung, W. Chaiwat, A. Fuongfuchat, S. Varavinit, S. Dangtip, and M. Suphantharika. 2014. Effect of cross-linking on physicochemical properties of tapioca starch and its application in soup product. Carbohydrate Polymers 101:656–65. doi: 10.1016/j.carbpol.2013.09.100.
  • Wu, C., Q.-Y. Wu, M. Wu, W. Jiang, J.-Y. Qian, S.-Q. Rao, L. Zhang, Q. Li, and C. Zhang. 2019. Effect of pulsed electric field on properties and multi-scale structure of japonica rice starch. LWT 116:108515. doi: 10.1016/j.lwt.2019.108515.
  • Xu, T., X. Li, S. Ji, Y. Zhong, J. Simal-Gandara, E. Capanoglu, J. Xiao, and B. Lu. 2021. Starch modification with phenolics: Methods, physicochemical property alteration, and mechanisms of glycaemic control. Trends in Food Science & Technology 111:12–26. doi: 10.1016/j.tifs.2021.02.023.
  • Yang, Q., L. Qi, Z. Luo, X. Kong, Z. Xiao, P. Wang, and X. Peng. 2017. Effect of microwave irradiation on internal molecular structure and physical properties of waxy maize starch. Food Hydrocolloids 69:473–82. doi: 10.1016/j.foodhyd.2017.03.011.
  • Yang, Z., S. Chaib, Q. Gu, and Y. Hemar. 2017. Impact of pressure on physicochemical properties of starch dispersions. Food Hydrocolloids 68:164–77. doi: 10.1016/j.foodhyd.2016.08.032.
  • Yashini, M., C. K. Sunil, S. Sahana, S. D. Hemanth, D. V. Chidanand, and A. Rawson. 2021. Protein-based fat replacers – A review of recent advances. Food Reviews International 37 (2):197–223.
  • Yassaroh, Y., A. J. Woortman, and K. Loos. 2019. A new way to improve physicochemical properties of potato starch. Carbohydrate Polymers 204:1–8. doi: 10.1016/j.carbpol.2018.09.082.
  • Yazid, N., S. M. N. Abdullah, N. Muhammad, and H. M. Matias-Peralta. 2018. Application of starch and starch-based products in food industry. Journal of Science and Technology 10 (2):144–174. doi: 10.30880/jst.2018.10.02.023.
  • Zavareze, E. R., and A. R. G. Dias. 2011. Impact of heat–moisture treatment and annealing in starches: A review. Carbohydrate Polymers 83 (2):317–28. doi: 10.1016/j.carbpol.2010.08.064.
  • Zeng, S., X. Wu, S. Lin, H. Zeng, X. Lu, Y. Zhang, and B. Zheng. 2015. Structural characteristics and physicochemical properties of lotus seed resistant starch prepared by different methods. Food Chemistry 186:213–22. doi: 10.1016/j.foodchem.2015.03.143.
  • Zhang, B., D. Qiao, S. Zhao, Q. Lin, J. Wang, and F. Xie. 2020. Starch-based food matrices containing protein: Recent understanding of morphology, structure, and properties. Trends in Food Science & Technology 114:212–31. doi: 10.1016/j.tifs.2021.05.033.
  • Zhang, J., M. Zhang, X. Bai, Y. Zhang, and C. Wang. 2022. The impact of high hydrostatic pressure treatment time on the structure, gelatinization and thermal properties and in vitro digestibility of oat starch. Grain & Oil Science and Technology 5 (1):1–12. doi: 10.1016/j.gaost.2022.01.002.
  • Zhang, L. M. 2001. A review of starches and their derivatives for oilfield applications in China. Starch – Stärke 53 (9):401–7. doi: 10.1002/1521-379X(200109)53:9<401::AID-STAR401>3.0.CO;2-2.
  • Zhang, Y., B. Li, F. Xu, S. He, Y. Zhang, L. Sun, K. Zhu, S. Li, G. Wu, and L. Tan. 2021. Jackfruit starch: Composition, structure, functional properties, modifications and applications. Trends in Food Science & Technology 107:268–83. doi: 10.1016/j.tifs.2020.10.041.
  • Zhou, Y-l., L-h Cui, X-y You, Z-h Jiang, W-h Qu, P-d Liu, D-y Ma, and Y-y Cui. 2021. Effects of repeated and continuous dry heat treatments on the physicochemical and structural properties of quinoa starch. Food Hydrocolloids. 113:106532–29. doi: 10.1016/j.foodhyd.2020.106532.
  • Zhu, F, and Q. Xie. 2018. Rheological and thermal properties in relation to molecular structure of New Zealand sweetpotato starch. Food Hydrocolloids. 83:165–72. doi: 10.1016/j.foodhyd.2018.05.004.
  • Zhu, F. 2014. Structure, physicochemical properties, modifications, and uses of sorghum starch. Comprehensive Reviews in Food Science and Food Safety 13 (4):597–610. doi: 10.1111/1541-4337.12070.
  • Zhu, F. 2018. Relationships between amylopectin internal molecular structure and physicochemical properties of starch. Trends in Food Science & Technology 78:234–42. doi: 10.1016/j.tifs.2018.05.024.
  • Zhu, F. 2019a. Starch based aerogels: Production, properties and applications. Trends in Food Science & Technology 89:1–10. doi: 10.1016/j.tifs.2019.05.001.
  • Zhu, F. 2019b. Starch based Pickering emulsions: Fabrication, properties, and applications. Trends in Food Science & Technology 85:129–37. doi: 10.1016/j.tifs.2019.01.012.
  • Zhu, F. 2021. Structure and physicochemical properties of starch affected by dynamic pressure treatments: A review. Trends in Food Science & Technology 116:639–54. doi: 10.1016/j.tifs.2021.07.036.
  • Zhu, F., R. Mojel, and G. Li. 2018. Physicochemical properties of black pepper (Piper nigrum) starch. Carbohydrate Polymers 181:986–93. doi: 10.1016/j.carbpol.2017.11.051.
  • Zia-ud-Din, H. Xiong, and P. Fei. 2017. Physical and chemical modification of starches: A review. Critical Reviews in Food Science and Nutrition 57 (12):2691–705. doi: 10.1080/10408398.2015.1087379.
  • Zuritz, C. A., S. K. Sastry, S. C. McCoy, E. G. Murakami, and J. L. Blaisdell. 1989. A modified Fitch device for measuring the thermal conductivity of small food particles. Transactions of the ASAE 32 (2):0711–8. doi: 10.13031/2013.31059.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.