1,054
Views
7
CrossRef citations to date
0
Altmetric
Systematic Review

Edible oleogels based on high molecular weight oleogelators and its prospects in food applications

, , , &

References

  • Abdollahi, M., S. A. H. Goli, and N. Soltanizadeh. 2020. Physicochemical properties of foam-templated oleogel based on gelatin and xanthan gum. European Journal of Lipid Science and Technology 122 (2):1900196. doi: 10.1002/ejlt.201900196.
  • Abdolmaleki, K., L. Alizadeh, K. Nayebzadeh, M. S. Hosseini, and R. Shahin. 2020. Oleogel production based on binary and ternary mixtures of sodium caseinate, xanthan gum, and guar gum: Optimization of hydrocolloids concentration and drying method. Journal of Texture Studies 51 (2):290–9. doi: 10.1111/jtxs.12469.
  • Adili, L., L. Roufegarinejad, M. Tabibiazar, H. Hamishehkar, and A. Alizadeh. 2020. Development and characterization of reinforced ethyl cellulose based oleogel with adipic acid: Its application in cake and beef burger. LWT 126:109277. doi: 10.1016/j.lwt.2020.109277.
  • Aguilar-Zárate, M., B. A. Macias-Rodriguez, J. F. Toro-Vazquez, and A. G. Marangoni. 2019. Engineering rheological properties of edible oleogels with ethylcellulose and lecithin. Carbohydrate Polymers 205:98–105. doi: 10.1016/j.carbpol.2018.10.032.
  • Aiache, J. M., P. Gauthier, and S. Aiache. 1992. New gelification method for vegetable oils I: Cosmetic application. International Journal of Cosmetic Science 14 (5):228–34. doi: 10.1111/j.1467-2494.1992.tb00056.x.
  • Alizadeh, L., K. Abdolmaleki, K. Nayebzadeh, and S. M. Hosseini. 2020. Oleogel fabrication based on sodium caseinate, hydroxypropyl methylcellulose, and beeswax: Effect of concentration, oleogelation method, and their optimization. Journal of the American Oil Chemists’ Society 97 (5):485–96. doi: 10.1002/aocs.12341.
  • Banaś, K., and J. Harasym. 2021. Natural gums as oleogelators. International Journal of Molecular Sciences 22 (23):12977. doi: 10.3390/ijms222312977.
  • Baraki, S. Y., Y. Jiang, X. Li, D. K. Debeli, B. Wang, X. Feng, Z. Mao, and X. Sui. 2021. Stable sunflower oil oleogel from oil/water pickering emulsion with regenerated chitin. LWT 146:111483. doi: 10.1016/j.lwt.2021.111483.
  • Barbut, S., J. Wood, and A. Marangoni. 2016. Quality effects of using organogels in breakfast sausage. Meat Science 122:84–9. doi: 10.1016/j.meatsci.2016.07.022.
  • Bhattarai, M., P. Penttilä, L. Barba, B. Macias-Rodriguez, S. Hietala, K. S. Mikkonen, and F. Valoppi. 2022. Size-dependent filling effect of crystalline celluloses in structural engineering of composite oleogels. LWT 160:113331. doi: 10.1016/j.lwt.2022.113331.
  • Borkowski, D., I. Krucińska, and Z. Draczyński. 2020. Preparation of nanocomposite alginate fibers modified with titanium dioxide and zinc oxide. Polymers 12 (5):1040. doi: 10.3390/polym12051040.
  • Boye, J. I., I. Alli, A. A. Ismail, B. F. Gibbs, and Y. Konishi. 1995. Factors affecting molecular characteristics of whey protein gelation. International Dairy Journal 5 (4):337–53. doi: 10.1016/0958-6946(94)00012-E.
  • Burger, T. G., and Y. Zhang. 2019. Recent progress in the utilization of pea protein as an emulsifier for food applications. Trends in Food Science & Technology 86:25–33. doi: 10.1016/j.tifs.2019.02.007.
  • Cameron, N. R., and D. C. Sherrington. 1996. High Internal Phase Emulsions (HIPEs) - Structure, properties and use in polymer preparation. Advances in Polymer Science 126:164–214. doi: 10.1007/3-540-60484-7_4.
  • Chaves, K. F., D. Barrera-Arellano, and A. P. B. Ribeiro. 2018. Potential application of lipid organogels for food industry. Food Research International (Ottawa, ON) 105:863–72. doi: 10.1016/j.foodres.2017.12.020.
  • Chen, L., Z. Yang, D. J. McClements, Z. Jin, and M. Miao. 2022. Biological macromolecules for nutrients delivery. In Biological Macromolecules. doi: 10.1016/b978-0-323-85759-8.00020-8.
  • Chen, K., and H. Zhang. 2020. Fabrication of oleogels via a facile method by oil absorption in the aerogel templates of protein-polysaccharide conjugates. ACS Applied Materials & Interfaces 12 (6):7795–804. doi: 10.1021/acsami.9b21435.
  • Chen, Y., Y. She, R. Zhang, J. Wang, X. Zhang, and X. Gou. 2020. Use of starch-based fat replacers in foods as a strategy to reduce dietary intake of fat and risk of metabolic diseases. Food Science & Nutrition 8 (1):16–22. doi: 10.1002/fsn3.1303.
  • Ci, S. X., T. H. Huynh, L. W. Louie, A. Yang, B. J. Beals, N. Ron, W.-G. Tsang, P. Soon-Shiong, and N. P. Desai. 1999. Molecular mass distribution of sodium alginate by high-performance size-exclusion chromatography. Journal of Chromatography A 864 (2):199–210. doi: 10.1016/S0021-9673(99)01029-8.
  • Co, E. D., and A. G. Marangoni. 2018. Oleogels. In Edible oleogels, 1–29. USA: AOCS Press. doi: 10.1016/b978-0-12-814270-7.00001-0.
  • Davidovich-Pinhas, M., S. Barbut, and A. G. Marangoni. 2015. The role of surfactants on ethylcellulose oleogel structure and mechanical properties. Carbohydrate Polymers 127:355–62. doi: 10.1016/j.carbpol.2015.03.085.
  • Davidovich-Pinhas, M., S. Barbut, and A. G. Marangoni. 2016. Development, characterization, and utilization of food-grade polymer oleogels. Annual Review of Food Science and Technology 7:65–91. doi: 10.1146/annurev-food-041715-033225.
  • de Vries, A., A. Wesseling, E. van der Linden, and E. Scholten. 2017. Protein oleogels from heat-set whey protein aggregates. Journal of Colloid and Interface Science 486:75–83. doi: 10.1016/j.jcis.2016.09.043.
  • de Vries, A., D. Jansen, E. van der Linden, and E. Scholten. 2018. Tuning the rheological properties of protein-based oleogels by water addition and heat treatment. Food Hydrocolloids 79:100–9. doi: 10.1016/j.foodhyd.2017.11.043.
  • de Vries, A., Y. L. Gomez, E. van der Linden, and E. Scholten. 2017. The effect of oil type on network formation by protein aggregates into oleogels. RSC Advances 7 (19):11803–12. doi: 10.1039/C7RA00396J.
  • de Vries, A., Y. Lopez Gomez, B. Jansen, E. van der Linden, and E. Scholten. 2017. Controlling agglomeration of protein aggregates for structure formation in liquid oil: A sticky business. ACS Applied Materials & Interfaces 9 (11):10136–47. doi: 10.1021/acsami.7b00443.
  • Dong, Y., Z. Wei, Y. Wang, Q. Tang, C. Xue, and Q. Huang. 2022. Oleogel-based Pickering emulsions stabilized by ovotransferrin–carboxymethyl chitosan nanoparticles for delivery of curcumin. LWT 157:113121. doi: 10.1016/j.lwt.2022.113121.
  • Dutkiewicz, J, and J. Dickstein. 2021. The Ism in veganism: The case for a minimal practice-based definition. Food Ethics 6 (1):1–19. doi: 10.1007/s41055-020-00081-6.
  • Eigel, W. N., J. E. Butler, C. A. Ernstrom, H. M. Farrell, V. R. Harwalkar, R. Jenness, and R. M. Whitney. 1984. Nomenclature of proteins of cow’s milk: Fifth revision. Journal of Dairy Science 67 (8):1599–631. doi: 10.3168/jds.S0022-0302(84)81485-X.
  • Einhorn-Stoll, U., H. Kastner, A. Urbisch, L. W. Kroh, and S. Drusch. 2019. Thermal degradation of citrus pectin in low-moisture environment- Influence of acidic and alkaline pre-treatment. Food Hydrocolloids. 86:104–15. doi: 10.1016/j.foodhyd.2018.02.030.
  • Espert, M., M. J. Hernández, T. Sanz, and A. Salvador. 2021. Reduction of saturated fat in chocolate by using sunflower oil-hydroxypropyl methylcellulose based oleogels. Food Hydrocolloids 120:106917. doi: 10.1016/j.foodhyd.2021.106917.
  • Feichtinger, A., and E. Scholten. 2020. Preparation of protein oleogels: Effect on structure and functionality. Foods 9 (12):1745. doi: 10.3390/foods9121745.
  • Flöter, E., T. Wettlaufer, V. Conty, and M. Scharfe. 2021. Oleogels-their applicability and methods of characterization. Molecules 26 (6):1673. doi: 10.3390/molecules26061673.
  • Fontes-Candia, C., A. Ström, P. Lopez-Sanchez, A. López-Rubio, and M. Martínez-Sanz. 2020. Rheological and structural characterization of carrageenan emulsion gels. Algal Research 47 (2):101873. doi: 10.1016/j.algal.2020.101873.
  • Fontes-Candia, C., J. C. Martínez, A. López-Rubio, L. Salvia-Trujillo, O. Martín-Belloso, and M. Martínez-Sanz. 2022. Emulsion gels and oil-filled aerogels as curcumin carriers: Nanostructural characterization of gastrointestinal digestion products. Food Chemistry 387:132877. doi: 10.1016/j.foodchem.2022.132877.
  • Fontes-Candia, C., P. Lopez-Sanchez, A. Ström, J. C. Martínez, A. Salvador, T. Sanz, H. D. Trefna, A. López-Rubio, and M. Martínez-Sanz. 2021. Maximizing the oil content in polysaccharide-based emulsion gels for the development of tissue mimicking phantoms. Carbohydrate Polymers 256:117496. doi: 10.1016/j.carbpol.2020.117496.
  • Gallego, R., M. González, J. F. Arteaga, C. Valencia, and J. M. Franco. 2014. Influence of functionalization degree on the rheological properties of isocyanate-functionalized chitin- and chitosan-based chemical oleogels for lubricant applications. Polymers 6 (7):1929–47. doi: 10.3390/polym6071929.
  • Gao, Y., and S. Wu. 2020. Development and evaluation of a novel oleogel system based on starch–water–wax–oil. Food & Function 11 (9):7727–35. doi: 10.1039/D0FO01785J.
  • Ghiasi, F., and M. T. Golmakani. 2022. Fabrication and characterization of a novel biphasic system based on starch and ethylcellulose as an alternative fat replacer in a model food system. Innovative Food Science & Emerging Technologies 78:103028. doi: 10.1016/j.ifset.2022.103028.
  • Gómez-Estaca, J., A. M. Herrero, B. Herranz, M. D. Álvarez, F. Jiménez-Colmenero, and S. Cofrades. 2019. Characterization of ethyl cellulose and beeswax oleogels and their suitability as fat replacers in healthier lipid pâtés development. Food Hydrocolloids 87:960–9. doi: 10.1016/j.foodhyd.2018.09.029.
  • Gómez-Estaca, J., T. Pintado, F. Jiménez-Colmenero, and S. Cofrades. 2020. The effect of household storage and cooking practices on quality attributes of pork burgers formulated with PUFA- and curcumin-loaded oleogels as healthy fat substitutes. LWT 119:108909. doi: 10.1016/j.lwt.2019.108909.
  • Gravelle, A. J., C. Blach, J. Weiss, S. Barbut, and A. G. Marangoni. 2017. Structure and properties of an ethylcellulose and stearyl alcohol/stearic acid (EC/SO:SA) hybrid oleogelator system. European Journal of Lipid Science and Technology 119 (11):1700069. doi: 10.1002/ejlt.201700069.
  • Gravelle, A. J., M. Davidovich-Pinhas, S. Barbut, and A. G. Marangoni. 2017. Influencing the crystallization behavior of binary mixtures of stearyl alcohol and stearic acid (SOSA) using ethylcellulose. Food Research International (Ottawa, ON) 91:1–10. doi: 10.1016/j.foodres.2016.11.024.
  • Gravelle, A. J., S. Barbut, M. Quinton, and A. G. Marangoni. 2014. Towards the development of a predictive model of the formulation-dependent mechanical behaviour of edible oil-based ethylcellulose oleogels. Journal of Food Engineering 143:114–22. doi: 10.1016/j.jfoodeng.2014.06.036.
  • Habibi, A., S. Kasapis, and T. Truong. 2022. Effect of hydrogel particle size embedded into oleogels on the physico-functional properties of hydrogel-in-oleogel (bigels). LWT 163:113501. doi: 10.1016/j.lwt.2022.113501.
  • Hoffmann, R. A., A. L. Russell, & M. J. Gidley. 1995. Molecular weight distribution of carrageenans: Characterisation of commercial stabilisers and effect of cation depletion on depolymerisation. Gums and Stabilisers for the Food Industry 8:137–150.
  • Iglesias, M. C., N. Shivyari, A. Norris, R. Martin-Sampedro, M. E. Eugenio, P. Lahtinen, M. L. Auad, T. Elder, Z. Jiang, C. E. Frazier, et al. 2020. The effect of residual lignin on the rheological properties of cellulose nanofibril suspensions. Journal of Wood Chemistry and Technology 40 (6):370–81. doi: 10.1080/02773813.2020.1828472.
  • Ishwarya S, P., S. R, and P. Nisha. 2022. Advances and prospects in the food applications of pectin hydrogels. Critical Reviews in Food Science and Nutrition 62 (16):4393–417. doi: 10.1080/10408398.2021.1875394.
  • Jaberi, R., A. Pedram Nia, S. Naji-Tabasi, A. H. Elhamirad, and M. Shafafi Zenoozian. 2020. Rheological and structural properties of oleogel base on soluble complex of egg white protein and xanthan gum. Journal of Texture Studies 51 (6):925–36. doi: 10.1111/jtxs.12552.
  • Jiang, Q., P. Li, M. Ji, L. Du, S. Li, Y. Liu, and Z. Meng. 2022. Synergetic effects of water-soluble polysaccharides for intensifying performances of oleogels fabricated by oil-absorbing cryogels. Food Chemistry 372:131357. doi: 10.1016/j.foodchem.2021.131357.
  • Jiang, Y., L. Liu, B. Wang, X. Sui, Y. Zhong, L. Zhang, Z. Mao, and H. Xu. 2018. Cellulose-rich oleogels prepared with an emulsion-templated approach. Food Hydrocolloids 77:460–4. doi: 10.1016/j.foodhyd.2017.10.023.
  • Kaczmarek, M. B., K. Struszczyk-Swita, X. Li, M. Szczęsna-Antczak, and M. Daroch. 2019. Enzymatic Modifications of Chitin, Chitosan, and Chitooligosaccharides. Frontiers in Bioengineering and Biotechnolosgy. 7. doi: 10.3389/fbioe.2019.00243.
  • Karaman, S., Y. Kesler, M. Goksel, M. Dogan, and A. Kayacier. 2014. Rheological and some Physicochemical Properties of Selected Hydrocolloids and their Interactions with Guar Gum: Characterization using Principal Component Analysis and Viscous Synergism Index. International Journal of Food Properties 17 (8):1655–67. doi: 10.1080/10942912.2012.675612.
  • Kavimughil, M., M. M. Leena, J. A. Moses, and C. Anandharamakrishnan. 2022. Effect of material composition and 3D printing temperature on hot-melt extrusion of ethyl cellulose based medium chain triglyceride oleogel. Journal of Food Engineering 329:111055. doi: 10.1016/j.jfoodeng.2022.111055.
  • Khanra, S., M. Mondal, G. Halder, O. N. Tiwari, K. Gayen, and T. K. Bhowmick. 2018. Downstream processing of microalgae for pigments, protein and carbohydrate in industrial application: A review. Food and Bioproducts Processing 110:60–84. doi: 10.1016/j.fbp.2018.02.002.
  • Kyriakopoulou, K., J. K. Keppler, and A. J. van der Goot. 2021. Functionality of ingredients and additives in plant-based meat analogues. Foods 10 (3):600. doi: 10.3390/foods10030600.
  • Lam, A. C. Y., A. Can Karaca, R. T. Tyler, and M. T. Nickerson. 2018. Pea protein isolates: Structure, extraction, and functionality. Food Reviews International 34 (2):126–47. doi: 10.1080/87559129.2016.1242135.
  • Li, S., H. Zhang, K. Chen, M. Jin, S. H. Vu, S. Jung, N. He, Z. Zheng, and M.-S. Lee. 2022. Application of chitosan/alginate nanoparticle in oral drug delivery systems: prospects and challenges. Drug Delivery 29 (1):1142–9. doi: 10.1080/10717544.2022.2058646.
  • Li, D., Z. Wei, and C. Xue. 2021. Alginate-based delivery systems for food bioactive ingredients: An overview of recent advances and future trends. Comprehensive Reviews in Food Science and Food Safety 20 (6):5345–69. doi: 10.1111/1541-4337.12840.
  • Li, Q., Q. Ma, Y. Wu, Y. Li, B. Li, X. Luo, and S. Liu. 2020. Oleogel films through the pickering effect of bacterial cellulose nanofibrils featuring interfacial network stabilization. Journal of Agricultural and Food Chemistry 68 (34):9150–7. doi: 10.1021/acs.jafc.0c03214.
  • Liang, W-l., J-s. Liao, J.-R. Qi, W-x. Jiang, and X-q. Yang. 2022. Physicochemical characteristics and functional properties of high methoxyl pectin with different degree of esterification. Food Chemistry 375:131806. doi: 10.1016/j.foodchem.2021.131806.
  • Liang, H. N., and C. He Tang. 2014. Pea protein exhibits a novel Pickering stabilization for oil-in-water emulsions at pH 3.0. LWT 58 (2):463–469. doi: 10.1016/j.lwt.2014.03.023.
  • Lin, D., A. L. Kelly, and S. Miao. 2021. The role of mixing sequence in structuring O/W emulsions and emulsion gels produced by electrostatic protein-polysaccharide interactions between soy protein isolate-coated droplets and alginate molecules. Food Hydrocolloids 113:106537. doi: 10.1016/j.foodhyd.2020.106537.
  • Liu, J., S. Yang, X. Li, Q. Yan, M. J. T. Reaney, and Z. Jiang. 2019. Alginate oligosaccharides: Production, biological activities, and potential applications. Comprehensive Reviews in Food Science and Food Safety 18 (6):1859–81. doi: 10.1111/1541-4337.12494.
  • Lopez-Martínez, A., M. A. Charó-Alonso, A. G. Marangoni, and J. F. Toro-Vazquez. 2015. Monoglyceride organogels developed in vegetable oil with and without ethylcellulose. Food Research International 72:37–46. doi: 10.1016/j.foodres.2015.03.019.
  • López-Pedrouso, M., J. M. Lorenzo, B. Gullón, P. C. B. Campagnol, and D. Franco. 2021. Novel strategy for developing healthy meat products replacing saturated fat with oleogels. Current Opinion in Food Science 40:40–5. doi: 10.1016/j.cofs.2020.06.003.
  • Luo, S. Z., X. F. Hu, Y. J. Jia, L. H. Pan, Z. Zheng, Y. Y. Zhao, D. D. Mu, X. Y. Zhong, and S. T. Jiang. 2019. Camellia oil-based oleogels structuring with tea polyphenol-palmitate particles and citrus pectin by emulsion-templated method: Preparation, characterization and potential application. Food Hydrocolloids 95 (2):76–87. doi: 10.1016/j.foodhyd.2019.04.016.
  • Maity, G. C. 2007. Low molecular mass gelators of organic liquids. Journal of Physical Sciences 11:156–71.
  • Manzocco, L., F. Valoppi, S. Calligaris, F. Andreatta, S. Spilimbergo, and M. C. Nicoli. 2017. Exploitation of κ-carrageenan aerogels as template for edible oleogel preparation. Food Hydrocolloids 71 (1):68–75. doi: 10.1016/j.foodhyd.2017.04.021.
  • Manzoor, S., F. A. Masoodi, F. Naqash, and R. Rashid. 2022. Oleogels: Promising alternatives to solid fats for food applications. Food Hydrocolloids for Health 2:100058. doi: 10.1016/j.fhfh.2022.100058.
  • Marangoni, A. G. 2014. Chocolate compositions containing ethylcellulose oleogel and methods for preparing. European patent 2440067 B1 filed June 11, 2010, and issued April 9, 2014.
  • Martínez-Sanz, M., C. Fontes-Canida, M. J. Fabra, and A. López-Rubio. 2021. Obtención de un oleogel a partir de agar sin adición de sal catiónica. ES patent WO/2021/019117, filed July 27, 2020, and issued February 4, 2021.
  • Martins, A. J., A. A. Vicente, R. L. Cunha, and M. A. Cerqueira. 2018. Edible oleogels: An opportunity for fat replacement in foods. Food & Function 9 (2):758–73. doi: 10.1039/c7fo01641g.
  • Mendez, D. A., M. J. Fabra, A. Martínez-Abad, Μ. Μartínez-Sanz, M. Gorria, and A. López-Rubio. 2021. Understanding the different emulsification mechanisms of pectin: Comparison between watermelon rind and two commercial pectin sources. Food Hydrocolloids 120:106957. doi: 10.1016/j.foodhyd.2021.106957.
  • Meng, Z., K. Qi, Y. Guo, Y. Wang, and Y. Liu. 2018a. Effects of thickening agents on the formation and properties of edible oleogels based on hydroxypropyl methyl cellulose. Food Chemistry 246:137–49. doi: 10.1016/j.foodchem.2017.10.154.
  • Meng, Z., K. Qi, Y. Guo, Y. Wang, and Y. Liu. 2018b. Macro-micro structure characterization and molecular properties of emulsion-templated polysaccharide oleogels. Food Hydrocolloids 77:17–29. doi: 10.1016/j.foodhyd.2017.09.006.
  • Milani, J. M., and M. H. Naeli. 2020. Chitin- and chitosan-based oleogels: Rheological and thermal behavior modifications. In Handbook of chitin and chitosan, 383–406. Netherlands: Elsevier ltd. doi: 10.1016/B978-0-12-817966-6.00012-1.
  • Miller, R., R. Wüstneck, J. Krägel, and G. Kretzschmar. 1996. Dilational and shear rheology of adsorption layers at liquid interfaces. Colloids and Surfaces A: Physicochemical and Engineering Aspects 111 (1–2):75–118. doi: 10.1016/0927-7757(95)03492-7.
  • Mohanan, A., Y. R. Tang, M. T. Nickerson, and S. Ghosh. 2020. Oleogelation using pulse protein-stabilized foams and their potential as a baking ingredient. RSC Advances 10 (25):14892–905. doi: 10.1039/C9RA07614J.
  • Mungure, T. E., S. Roohinejad, A. E. D. Bekhit, R. Greiner, and K. Mallikarjunan. 2018. Potential application of pectin for the stabilization of nanoemulsions. Current Opinion in Food Science 19:72–6. doi: 10.1016/j.cofs.2018.01.011.
  • Murdan, S. 2005. Organogels in drug delivery. Expert Opinion on Drug Delivery 2 (3):489–505. doi: 10.1517/17425247.2.3.489.
  • Naji-Tabasi, S., E. Mahdian, A. Arianfar, and S. Naji-Tabasi. 2020. Investigation of oleogel properties prepared by pickering emulsion-templated stabilized with solid particles of basil seed gum and isolated soy protein as a fat substitute in cream. Journal of Research and Innovation in Food Science and Technology 9 (3):1–14. doi: 10.22101/jrifst.2020.229269.1168.
  • Nauki, M, and S. Y. Wy. 2018. Characteristic of gels in konjac gum-xanthan gum systems using large amplitude oscillatory shear (LAOS)®. PTPS 1:5–8.
  • Nikiforidis, C. V., and E. Scholten. 2015. Polymer organogelation with chitin and chitin nanocrystals. RSC Advances 5 (47):37789–99. doi: 10.1039/C5RA06451A.
  • Oh, I. K., and S. Lee. 2018. Utilization of foam structured hydroxypropyl methylcellulose for oleogels and their application as a solid fat replacer in muffins. Food Hydrocolloids 77:796–802. doi: 10.1016/j.foodhyd.2017.11.022.
  • Oh, I., J. H. Lee, H. G. Lee, and S. Lee. 2019. Feasibility of hydroxypropyl methylcellulose oleogel as an animal fat replacer for meat patties. Food Research International (Ottawa, ON) 122:566–72. doi: 10.1016/j.foodres.2019.01.012.
  • Ojijo, N. K. O., I. Neeman, S. Eger, and E. Shimoni. 2004. Effects of monoglyceride content, cooling rate and shear on the rheological properties of olive oil/monoglyceride gel networks. Journal of the Science of Food and Agriculture 84 (12):1585–93. doi: 10.1002/jsfa.1831.
  • Pabst, M., R. M. Fischl, L. Brecker, W. Morelle, A. Fauland, H. Köfeler, F. Altmann, and R. Léonard. 2013. Rhamnogalacturonan II structure shows variation in the side chains monosaccharide composition and methylation status within and across different plant species. The Plant Journal. doi: 10.1111/tpj.12271.
  • Pan, H., X. Xu, Z. Qian, H. Cheng, X. Shen, S. Chen, and X. Ye. 2021. Xanthan gum-assisted fabrication of stable emulsion-based oleogel structured with gelatin and proanthocyanidins. Food Hydrocolloids 115:106596. doi: 10.1016/j.foodhyd.2021.106596.
  • Pan, J., L. Tang, Q. Dong, Y. Li, and H. Zhang. 2021. Effect of oleogelation on physical properties and oxidative stability of camellia oil-based oleogels and oleogel emulsions. Food Research International (Ottawa, Ont.) 140:110057. doi: 10.1016/j.foodres.2020.110057.
  • Patel, A. R. 2018. Structuring edible oils with hydrocolloids: Where do we stand? Food Biophysics 13 (2):113–5. doi: 10.1007/s11483-018-9527-6.
  • Patel, A. R., D. Schatteman, W. H. De Vos, A. Lesaffer, and K. Dewettinck. 2013. Preparation and rheological characterization of shellac oleogels and oleogel-based emulsions. Journal of Colloid and Interface Science 411:114–21. doi: 10.1016/j.jcis.2013.08.039.
  • Patel, A. R., D. Schatteman, W. H. De Vos, and K. Dewettinck. 2013. Shellac as a natural material to structure a liquid oil-based thermo reversible soft matter system. RSC Advances 3 (16):5324–7. doi: 10.1039/c3ra40934a.
  • Patel, A. R., N. Cludts, M. D. Bin Sintang, B. Lewille, A. Lesaffer, and K. Dewettinck. 2014. Polysaccharide-based oleogels prepared with an emulsion-templated approach. Chemphyschem: A European Journal of Chemical Physics and Physical Chemistry 15 (16):3435–9. doi: 10.1002/cphc.201402473.
  • Patel, A. R., P. S. Rajarethinem, N. Cludts, B. Lewille, W. H. De Vos, A. Lesaffer, A, and K. Dewettinck. 2015. Biopolymer-based structuring of liquid oil into soft solids and oleogels using water-continuous emulsions as templates. Langmuir: The ACS Journal of Surfaces and Colloids 31 (7):2065–73. doi: 10.1021/la502829u.
  • Pehlivanoğlu, H., M. Demirci, O. S. Toker, N. Konar, S. Karasu, and O. Sagdic. 2018. Oleogels, a promising structured oil for decreasing saturated fatty acid concentrations: Production and food-based applications. Critical Reviews in Food Science and Nutrition 58 (8):1330–41. doi: 10.1080/10408398.2016.1256866.
  • Pitkowski, A., D. Durand, and T. Nicolai. 2008. Structure and dynamical mechanical properties of suspensions of sodium caseinate. Journal of Colloid and Interface Science 326 (1):96–102. doi: 10.1016/j.jcis.2008.07.003.
  • Plazzotta, S., S. Calligaris, and L. Manzocco. 2020. Structural characterization of oleogels from whey protein aerogel particles. Food Research International (Ottawa, ON) 132:109099. doi: 10.1016/j.foodres.2020.109099.
  • Pușcaș, A., V. Mureșan, C. Socaciu, and S. Muste. 2020. Oleogels in food: A review of current and potential applications. Foods 9 (1):70. doi: 10.3390/foods9010070.
  • Qamar, S., B. Bhandari, and S. Prakash. 2019. Effect of different homogenisation methods and UHT processing on the stability of pea protein emulsion. Food Research International (Ottawa, ON) 116:1374–85. doi: 10.1016/j.foodres.2018.10.028.
  • Qi, W., T. Li, Z. Zhang, and T. Wu. 2021. Preparation and characterization of oleogel-in-water pickering emulsions stabilized by cellulose nanocrystals. Food Hydrocolloids. 110:106206. doi: 10.1016/j.foodhyd.2020.106206.
  • Qiu, C., Y. Huang, A. Li, D. Ma, and Y. Wang. 2018. Fabrication and characterization of oleogel stabilized by gelatin-polyphenol-polysaccharides nanocomplexes. Journal of Agricultural and Food Chemistry 66 (50):13243–52. doi: 10.1021/acs.jafc.8b02039.
  • Rogers, M. A., T. Strober, A. Bot, J. F. Toro-Vazquez, T. Stortz, and A. G. Marangoni. 2014. International Journal of Gastronomy and Food Science Edible oleogels in molecular gastronomy. International Journal of Gastronomy and Food Science 2 (1):22–31. doi: 10.1016/j.ijgfs.2014.05.001.
  • Roman, C., M. García-Morales, M. E. Eugenio, D. Ibarra, R. Martín-Sampedro, and M. A. Delgado. 2021. A sustainable methanol-based solvent exchange method to produce nanocellulose-based ecofriendly lubricants. Journal of Cleaner Production 319:128673. doi: 10.1016/j.jclepro.2021.128673.
  • Romoscanu, A. I., and R. Mezzenga. 2006. Emulsion-templated fully reversible protein-in-oil gels. Langmuir: The ACS Journal of Surfaces and Colloids 22 (18):7812–8. doi: 10.1021/la060878p.
  • Sagiri, S. S., and K. J. Rao. 2020. Natural and bioderived molecular gelator–based oleogels and their applications. In Biopolymer-based formulations, 513–59. Netherlands: Elsevier. doi: 10.1016/B978-0-12-816897-4.00022-9.
  • Sánchez, R., G. B. Stringari, J. M. Franco, C. Valencia, and C. Gallegos. 2011. Use of chitin, chitosan and acylated derivatives as thickener agents of vegetable oils for bio-lubricant applications. Carbohydrate Polymers 85 (3):705–14. doi: 10.1016/j.carbpol.2011.03.049.
  • Scholten, E. 2019. Edible oleogels: How suitable are proteins as a structurant? Current Opinion in Food Science 27:36–42. doi: 10.1016/j.cofs.2019.05.001.
  • Scholten, E., and A. de Vries. 2017. Proteins as building blocks for oil structuring. In Food Chemistry, function and analysis, 3, 150–74. Royal Scociety of Chemistry. doi: 10.1039/9781788010184-00150.
  • Shankar, S, and J.-W. Rhim. 2017. Preparation and characterization of agar/lignin/silver nanoparticles composite films with ultraviolet light barrier and antibacterial properties. Food Hydrocolloids. 71:76–84. doi: 10.1016/j.foodhyd.2017.05.002.
  • Silva-Avellaneda, E., K. Bauer-Estrada, R. E. Prieto-Correa, and M. X. Quintanilla-Carvajal. 2021. The effect of composition, microfluidization and process parameters on formation of oleogels for ice cream applications. Scientific Reports 11 (1):1–10. doi: 10.1038/s41598-021-86233-y.
  • Siraj, N., M. A. Shabbir, T. Ahmad, A. Sajjad, M. R. Khan, M. I. Khan, M. S, and Butt, M. 2015. Organogelators as a saturated fat replacer for structuring edible oils. International Journal of Food Properties 18 (9):1973–89. doi: 10.1080/10942912.2014.951891.
  • Sui, X., T. Zhang, and L. Jiang. 2021. Soy protein: Molecular structure revisited and recent advances in processing technologies. Annual Review of Food Science and Technology 12 (1):119–47. doi: 10.1146/annurev-food-062220-104405.
  • Suzuki, M., and K. Hanabusa. 2010. Polymer organogelators that make supramolecular organogels through physical cross-linking and self-assembly. Chemical Society Reviews 39 (2):455–63. doi: 10.1039/b910604a.
  • Szymańska, I., A. Żbikowska, M. Kowalska, and K. Golec. 2021. Application of oleogel and conventional fats for ultrasound-assisted obtaining of vegan creams. Journal of Oleo Science 70 (10):1495–507. doi: 10.5650/jos.ess21126.
  • Tang, Y. R., and S. Ghosh. 2021. Canola protein thermal denaturation improved emulsion-templated oleogelation and its cake-baking application. RSC Advances 11 (41):25141–57. doi: 10.1039/D1RA02250D.
  • Tasende, M. G., and J. A. Manríquez-Hernández. 2016. Carrageenan properties and applications: A review. In Carrageenans: Sources and extraction methods, molecular structure, bioactive properties and health effects, 1–269. USA: Nova publishers.
  • Tavernier, I., A. R. Patel, P. Van der Meeren, and K. Dewettinck. 2017. Emulsion-templated liquid oil structuring with soy protein and soy protein: κ-carrageenan complexes. Food Hydrocolloids 65:107–20. doi: 10.1016/j.foodhyd.2016.11.008.
  • Tavernier, I., W. Wijaya, P. Van der Meeren, K. Dewettinck, and A. R. Patel. 2016. Food grade particles for emulsion stabilization. Trends in Food Science & Technology 50:159–74. doi: 10.1016/j.tifs.2016.01.023.
  • Tsung, K. L., J. Ilavsky, and G. W. Padua. 2020. Formation and characterization of zein-based oleogels. Journal of Agricultural and Food Chemistry 68 (46):13276–81. doi: 10.1021/acs.jafc.0c00184.
  • Urbánková, L., T. Sedláček, V. Kašpárková, and R. Bordes. 2021. Formation of oleogels based on emulsions stabilized with cellulose nanocrystals and sodium caseinate. Journal of Colloid and Interface Science 596:245–56. doi: 10.1016/j.jcis.2021.02.104.
  • Utrilla, M. C., A. García Ruiz, and A. Soriano. 2015. Effect of partial replacement of pork meat with olive oil on the sensory quality of dry-ripened venison sausage. Italian Journal of Food Science 27 (4):443–9. doi: 10.14674/1120-1770/ijfs.v376.
  • Vélez-Erazo, E. M., K. Bosqui, R. S. Rabelo, L. E. Kurozawa, and M. D. Hubinger. 2020. High internal phase emulsions (HIPE) using pea protein and different polysaccharides as stabilizers. Food Hydrocolloids 105:105775. doi: 10.1016/j.foodhyd.2020.105775.
  • Wang, Q., M. Espert, V. Larrea, A. Quiles, A. Salvador, and T. Sanz. 2023. Comparison of different indirect approaches to design edible oleogels based on cellulose ethers. Food Hydrocolloids 134:108007. doi: 10.1016/j.foodhyd.2022.108007.
  • Wang, Z., J. Chandrapala, T. Truong, and A. Farahnaky. 2022. Oleogels prepared with low molecular weight gelators: Texture, rheology and sensory properties, a review. Critical Reviews in Food Science and Nutrition 20:1–45. doi: 10.1080/10408398.2022.2027339.
  • Wei, F., M. Lu, J. Li, J. Xiao, M. A. Rogers, Y. Cao, and Y. Lan. 2022. Construction of foam-templated oleogels based on rice bran protein. Food Hydrocolloids 124:107245. doi: 10.1016/j.foodhyd.2021.107245.
  • Wijaya, W., A. R. Patel, A. D. Setiowati, and P. Van der Meeren. 2017. Functional colloids from proteins and polysaccharides for food applications. Trends in Food Science & Technology 68:56–69. doi: 10.1016/j.tifs.2017.08.003.
  • Wijaya, W., P. Van der Meeren, C. H. Wijaya, and A. R. Patel. 2017. High internal phase emulsions stabilized solely by whey protein isolate-low methoxyl pectin complexes: Effect of pH and polymer concentration. Food & Function 8 (2):584–94. doi: 10.1039/c6fo01027j.
  • Wijaya, W., Q. Sun, L. Vermeir, K. Dewettinck, A. R. Patel, and P. Van der Meeren. 2019. pH and protein to polysaccharide ratio control the structural properties and viscoelastic network of HIPE-templated biopolymeric oleogels. Food Structure 21:100112–3291. doi: 10.1016/j.foostr.2019.100112.
  • Willats, W. G. T., J. P. Knox, and J. D. Mikkelsen. 2006. Pectin: New insights into an old polymer are starting to gel. Trends in Food Science & Technology 17 (3):97–104. doi: 10.1016/j.tifs.2005.10.008.
  • Willett, S. A., and C. C. Akoh. 2019. Encapsulation of menhaden oil structured lipid oleogels in alginate microparticles. LWT 116:108566. doi: 10.1016/j.lwt.2019.108566.
  • Ye, X., P. Li, Y. M. Lo, H. Fu, and Y. Cao. 2019. Development of Novel Shortenings Structured by Ethylcellulose Oleogels. Journal of Food Science 84 (6):1456–64. doi: 10.1111/1750-3841.14615.
  • Yu, D., Y. Chen, X. Chen, Y. Huang, L. Wang, M. Pan, and W. Elfalleh. 2021. Electrolysis soy protein isolate-based oleogels prepared with an emulsion-templated approach. International Journal of Food Engineering 17 (8):583–94. doi: 10.1515/ijfe-2021-0076.
  • Yu, Y., T. Wang, Y. Gong, W. Wang, X. Wang, D. Yu, F. Wu, and L. Wang. 2022. Effect of ultrasound on the structural characteristics and oxidative stability of walnut oil oleogel coated with soy protein isolate-phosphatidylserine. Ultrasonics Sonochemistry 83:105945 10.1016/j.ultsonch.2022.105945. PMC: 35149379
  • Zetzl, A. K., A. G. Marangoni, and S. Barbut. 2012. Mechanical properties of ethylcellulose oleogels and their potential for saturated fat reduction in frankfurters. Food & Function 3 (3):327–37. doi: 10.1039/c2fo10202a.
  • Zhao, W., Z. Wei, C. Xue, and Y. Meng. 2023. Development of food-grade oleogel via the aerogel-templated method: Oxidation stability, astaxanthin delivery and emulsifying application. Food Hydrocolloids 134:108058. doi: 10.1016/j.foodhyd.2022.108058.
  • Zheng, H., L. Mao, M. Cui, J. Liu, and Y. Gao. 2020. Development of food-grade bigels based on κ-carrageenan hydrogel and monoglyceride oleogels as carriers for β-carotene: Roles of oleogel fraction. Food Hydrocolloids 105:105855. doi: 10.1016/j.foodhyd.2020.105855.
  • Zhong, F., W. Yokoyama, Q. Wang, and C. F. Shoemaker. 2006. Rice Starch, Amylopectin, and Amylose:  Molecular Weight and Solubility in Dimethyl Sulfoxide-Based Solvents. Journal of Agricultural and Food Chemistry 54 (6):2320–6. doi: 10.1021/jf051918i.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.