1,157
Views
11
CrossRef citations to date
0
Altmetric
Reviews

Food extrusion: An advanced process for innovation and novel product development

References

  • Adegoke, S. C, and R. Tahergorabi. 2021. Chapter 27 – utilization of seafood-processing by-products for the development of value-added food products. In Valorization of agri-food wastes and by-products, edited by R. Bhat, 537–59. Cambridge, Massachusetts: Academic Press.
  • Agunbiade, A. O., L. Song, O. J. Agunbiade, C. E. Ofoedu, J. S. Chacha, H. T. Duguma, S. M. Hossaini, W. A. Rasaq, I. Shorstkii, C. M. Osuji, et al. 2022. Potentials of 3d extrusion-based printing in resolving food processing challenges: A perspective review. Journal of Food Process Engineering 45 (4):e13996. doi: 10.1111/jfpe.13996.
  • Ai, Y., K. A. Cichy, J. B. Harte, J. D. Kelly, and P. K. W. Ng. 2016. Effects of extrusion cooking on the chemical composition and functional properties of dry common bean powders. Food Chemistry 211:538–45. doi: 10.1016/j.foodchem.2016.05.095.
  • Ai, Y, and J.-L. Jane. 2015. Gelatinization and rheological properties of starch. Starch – Stärke 67 (3-4):213–24. doi: 10.1002/star.201400201.
  • Akdogan, H. 1999. High moisture food extrusion. International Journal of Food Science & Technology 34 (3):195–207.
  • Alam, M. S., J. Kaur, H. Khaira, and K. Gupta. 2016a. Extrusion and extruded products: Changes in quality attributes as affected by extrusion process parameters: A review. Critical Reviews in Food Science and Nutrition 56 (3):445–75.
  • Alam, M. S., S. Pathania, and A. Sharma. 2016b. Optimization of the extrusion process for development of high fibre soybean-rice ready-to-eat snacks using carrot pomace and cauliflower trimmings. LWT 74:135–44. doi: 10.1016/j.lwt.2016.07.031.
  • Alam, M. R., M. Scampicchio, S. Angeli, and G. Ferrentino. 2019. Effect of hot melt extrusion on physical and functional properties of insect based extruded products. Journal of Food Engineering 259:44–51. doi: 10.1016/j.jfoodeng.2019.04.021.
  • Alavi, S, and R. P. Kingsly Ambrose. 2016. Particulate flow and agglomeration in food extrusion. In Production, handling and characterization of particulate materials, edited by H. G. Merkus, and G. M. H. Meesters, 137–55. Cham: Springer International Publishing.
  • Allen, K. E., C. E. Carpenter, and M. K. Walsh. 2007. Influence of protein level and starch type on an extrusion-expanded whey product. International Journal of Food Science & Technology 42 (8):953–60. doi: 10.1111/j.1365-2621.2006.01316.x.
  • Alshetaili, A., S. M. Alshahrani, B. K. Almutairy, and M. A. Repka. 2020. Hot melt extrusion processing parameters optimization. Processes 8 (11):1516. doi: 10.3390/pr8111516.
  • Altan, A., K. L. Mccarthy, and M. Maskan. 2008. Evaluation of snack foods from barley–tomato pomace blends by extrusion processing. Journal of Food Engineering 84 (2):2: 231–242. doi: 10.1016/j.jfoodeng.2007.05.014.
  • Álvarez, C. M., L. Restrepo-Uribe, J. A. López, O. A. Estrada, and M. D. P. Noriega. 2019. Improvement of stability and release of (-)-epicatechin by hot melt extrusion. Journal of Polymer Engineering 40 (1):75–85. doi: 10.1515/polyeng-2019-0140.
  • Arora, B., A. Yoon, M. Sriram, P. Singha, and S. S. H. Rizvi. 2020. Reactive extrusion: A review of the physicochemical changes in food systems. Innovative Food Science & Emerging Technologies 64:102429. doi: 10.1016/j.ifset.2020.102429.
  • Ascheri, J. L. R., R. J. B. Colque, L. Sousa, D. P. R. Ascheri, and E. Silva. 2019. How does extrusion technology help the development of foods with better nutritional value? Global Journal of Nutrition & Food Science 1 (3):GJNFSMSID.000511.
  • Awolu, O. O., A. O. Magoh, and M. E. Ojewumi. 2020. Development and evaluation of extruded ready-to-eat snack from optimized rice, kersting’s groundnut and lemon pomace composite flours. Journal of Food Science and Technology 57 (1):86–95.
  • Azad, M. O. K., M. Adnan, I. J. Sung, J. D. Lim, J.-S. Baek, Y. S. Lim, and C. H. Park. 2022. Development of value-added functional food by fusion of colored potato and buckwheat flour through hot-melt extrusion. Journal of Food Processing and Preservation 46 (5):5: e15312. doi: 10.1111/jfpp.15312.
  • Baiano, A. 2020. 3D printed foods: A comprehensive review on technologies, nutritional value, safety, consumer attitude, regulatory framework, and economic and sustainability issues. Food Reviews International 38 (5):986–1016. doi: 10.1080/87559129.2020.1762091.
  • Bairagi, S., A. K. Mishra, and K. A. Mottaleb. 2022. Impacts of the covid-19 pandemic on food prices: Evidence from storable and perishable commodities in india. PloS One 17 (3):e0264355. doi: 10.1371/journal.pone.0264355.
  • Bamidele, O. P, and M. N. Emmambux. 2021. Encapsulation of bioactive compounds by “extrusion” technologies: A review. Critical Reviews in Food Science and Nutrition 61 (18):3100–18.
  • Barrena, R, and M. Sánchez. 2013. Neophobia, personal consumer values and novel food acceptance. Food Quality and Preference 27 (1):72–84. doi: 10.1016/j.foodqual.2012.06.007.
  • Beacom, E., J. Bogue, and L. Repar. 2021. Market-oriented development of plant-based food and beverage products: A usage segmentation approach. Journal of Food Products Marketing 27 (4):204–222. doi: 10.1080/10454446.2021.1955799.
  • Beckman, J., F. Baquedano, and A. Countryman. 2021. The impacts of Covid-19 on gdp, food prices, and food security. Q Open 1 (1):qoab005. doi: 10.1093/qopen/qoab005.
  • Bento, J., A. P. Z. Bassinello, R. N. Carvalho, M. A. Souza Neto, M. Caliari, and M. S. Soares Júnior. 2021. Functional and pasting properties of colorful bean (Phaseolus vulgaris L) flours: Influence of the cooking method. Journal of Food Processing and Preservation 45 (11):e15899. doi: 10.1111/jfpp.15899.
  • Bernardo, F., J. A. Covas, and S. V. Canevarolo. 2022. On-line optical monitoring of the mixing performance in co-rotating twin-screw extruders. Polymers 14 (4):1152.
  • Bhati, D., B. Singh, A. Singh, S. Sharma, and R. Pandiselvam. 2022. Assessment of physicochemical, rheological, and thermal properties of indian rice cultivars: Implications on the extrusion characteristics. Journal of Texture Studies 1–16. doi: 10.1111/jtxs.12678.
  • Bhatt, S., H. Ye, J. Deutsch, H. Jeong, J. Zhang, and R. Suri. 2021. Food waste and upcycled foods: Can a logo increase acceptance of upcycled foods? Journal of Food Products Marketing 27 (4):188–203. doi: 10.1080/10454446.2021.1955798.
  • Bhattacharya, S. 2011. Raw materials for extrusion of foods. In Advances in food extrusion technology, 69–86. Boca Raton, Florida: CRC Press.
  • Bisharat, G. I., A. E. Lazou, N. M. Panagiotou, M. K. Krokida, and Z. B. Maroulis. 2015. Antioxidant potential and quality characteristics of vegetable-enriched corn-based extruded snacks. Journal of Food Science and Technology 52 (7):3986–4000.
  • Blindheim, J., C. W. Elverum, T. Welo, and M. Steinert. 2020. Concept evaluation in new product development. Journal of Engineering, Design and Technology 18 (5):1139–51. doi: 10.1108/JEDT-07-2019-0170.
  • Bouvier, J.-M, and O. H. Campanella. 2014. Extrusion processing technology: Food and non-food biomaterials. John Wiley & Sons, Ltd. 10.1002/9781118541685
  • Bouvier, J. M. 1996. Engineering analysis of preconditioning in the extrusion cooking process. Cereal Foods World 41 (9):738–40.
  • Butreddy, A., S. Bandari, and M. A. Repka. 2021. Quality-by-design in hot melt extrusion based amorphous solid dispersions: An industrial perspective on product development. European Journal of Pharmaceutical Sciences 158:105655. doi: 10.1016/j.ejps.2020.105655.
  • Calcio, Gaudino, E. G. Grillo, M. Manzoli, S. Tabasso, S. Maccagnan, and G. Cravotto. 2022. Mechanochemical applications of reactive extrusion from organic synthesis to catalytic and active materials. Molecules (Basel, Switzerland) 27 (2):449. doi: 10.3390/molecules27020449.
  • Cassagnau, P., V. Bounor-Legaré, and B. Vergnes. 2019. Experimental and modelling aspects of the reactive extrusion process. Mechanics & Industry 20 (8):8: 803. doi: 10.1051/meca/2019052.
  • Castells, M., S. Marín, V. Sanchis, and A. J. Ramos. 2005. Fate of mycotoxins in cereals during extrusion cooking: A review. Food Additives and Contaminants 22 (2):150–7.
  • Castro, N., V. Durrieu, C. Raynaud, A. Rouilly, L. Rigal, and C. Quellet. 2016. Melt extrusion encapsulation of flavors: A review. Polymer Reviews 56 (1):1: 137–186. doi: 10.1080/15583724.2015.1091776.
  • Cătunescu, G. M., A. M. Troncoso, and A. Jos. 2019. Risk assessment methodologies in the field of contaminants, food contact materials, technological ingredients and nutritional risks. EFSA Journal. European Food Safety Authority 17 (Suppl 2):e170911.
  • Cervantes-Ramírez, J. E., A. H. Cabrera-Ramirez, E. Morales-Sánchez, M. E. Rodriguez-García, M. Reyes-Vega, A. K. Ramírez-Jiménez, B. L. Contreras-Jiménez, and M. Gaytán-Martínez. 2020. Amylose-lipid complex formation from extruded maize starch mixed with fatty acids. Carbohydrate Polymers 246:116555. doi: 10.1016/j.carbpol.2020.116555.
  • Chang, D., K. Hayat, S. Abbas, and X. Zhang. 2019. Ascorbic acid encapsulation in a glassy carbohydrate matrix via hot melt extrusion: Preparation and characterization. Food Science and Technology 39 (3):660–6.
  • Chen, B., C. Yu, J. Liu, Y. Yang, X. Shen, S. Liu, and X. Tang. 2017. Physical properties and chemical forces of extruded corn starch fortified with soy protein isolate. International Journal of Food Science & Technology 52 (12):2604–13. doi: 10.1111/ijfs.13547.
  • Chen, F. L., Y. M. Wei, and B. Zhang. 2011. Chemical cross-linking and molecular aggregation of soybean protein during extrusion cooking at low and high moisture content. LWT – Food Science and Technology 44 (4):957–62.
  • Chen, F. L., Y. M. Wei, B. Zhang, and A. O. Ojokoh. 2010. System parameters and product properties response of soybean protein extruded at wide moisture range. Journal of Food Engineering 96 (2):208–13. doi: 10.1016/j.jfoodeng.2009.07.014.
  • Choton, S., N. Gupta, J. D. Bandral, N. Anjum, and A. Choudary. 2020. Extrusion technology and its application in food processing: A review. The Pharma Innovation 9 (2):2: 162–168. doi: 10.22271/tpi.2020.v9.i2d.4367.
  • Cornet, S. H. V., S. J. E. Snel, F. K. G. Schreuders, R. G. M. Van Der Sman, M. Beyrer, and A. J. Van Der Goot. 2022. Thermo-mechanical processing of plant proteins using shear cell and high-moisture extrusion cooking. Critical Reviews in Food Science and Nutrition 62 (12):3264–80. doi: 10.1080/10408398.2020.1864618.
  • Cotacallapa-Sucapuca, M., E. N. Vega, H. A. Maieves, J. D. J. Berrios, P. Morales, V. Fernández-Ruiz, and M. Cámara. 2021. Extrusion process as an alternative to improve pulses products consumption. A review. Foods 10 (5):1096. doi: 10.3390/foods10051096.
  • Devrajan, N., P. Prakash, and N. Jindal. 2018. Effect of extrusion cooking on colour (l*, a*, b*) of germinated buckwheat-corn based snacks. International Journal of Current Microbiology and Applied Sciences Special Issue 7:3413–24.
  • Dey, D., J. K. Richter, P. Ek, B.-J. Gu, and G. M. Ganjyal. 2021. Utilization of food processing by-products in extrusion processing: A review. Frontiers in Sustainable Food Systems 4. doi: 10.3389/fsufs.2020.603751.
  • Di Crosta, A., I. Ceccato, D. Marchetti, P. La Malva, R. Maiella, L. Cannito, M. Cipi, N. Mammarella, R. Palumbo, M. C. Verrocchio, et al. 2021. Psychological factors and consumer behavior during the covid-19 pandemic. PloS One 16 (8):e0256095.
  • Ding, Q.-B., P. Ainsworth, A. Plunkett, G. Tucker, and H. Marson. 2006. The effect of extrusion conditions on the functional and physical properties of wheat-based expanded snacks. Journal of Food Engineering 73 (2):142–148. doi: 10.1016/j.jfoodeng.2005.01.013.
  • Dong, Y., B. Wang, Y. Fang, X. Xu, S. Yan, B. Cui, and A. M. Abd El-Aty. 2022. Effect of different rotational speeds of the extruder on the structure of corn starch. Starch – Stärke 74 (3-4):2100234. doi: 10.1002/star.202100234.
  • Eerikäinen, T., Y. H. Zhu, and P. Linko. 1994. Neural networks in extrusion process identification and control. Food Control 5 (2):111–9. doi: 10.1016/0956-7135(94)90096-5.
  • Egal, A, and W. Oldewage-Theron. 2020. Extruded food products and their potential impact on food and nutrition security. South African Journal of Clinical Nutrition 33 (4):142–143. doi: 10.1080/16070658.2019.1583043.
  • Ek, P., and G. M. Ganjyal. 2020. Chapter 1 – basics of extrusion processing. In Extrusion cooking, 1–28. Sawston, Cambridge: Woodhead Publishing.
  • Ek, P., R. J. Kowalski, and G. M. Ganjyal. 2020. Chapter 4 – raw material behaviors in extrusion processing I (carbohydrates). In Extrusion cooking, edited by G. M. Ganjyal, 119–52. Sawston, Cambridge: Woodhead Publishing.
  • Emin, M. A. 2022. 7 – key technological advances of extrusion processing. In Food engineering innovations across the food supply chain, edited by P. Juliano, R. Buckow, M. H. Nguyen, K. Knoerzer, and J. Sellahewa, 131–48. Cambridge, Massachusetts: Academic Press.
  • Falcone, R. G., and R. D. Phillips. 1988. Effects of feed composition, feed moisture, and barrel temperature on the physical and rheological properties of snack-like products prepared from cowpea and sorghum flours by extrusion. Journal of Food Science 53 (5):1464–9. doi: 10.1111/j.1365-2621.1988.tb09300.x.
  • Fang, Q., M. A. Hanna, and Y. Lan. 2003. Extrusion system design. In Encyclopedia of agriculture, food and biological engineering, ed. D. R. Heldman, 306–9. New York: Marcel Dekker.
  • Fang, Y., B. Zhang, and Y. Wei. 2014. Effects of the specific mechanical energy on the physicochemical properties of texturized soy protein during high-moisture extrusion cooking. Journal of Food Engineering 121:32–8. doi: 10.1016/j.jfoodeng.2013.08.002.
  • Galanakis, C. M., M. Rizou, T. M. S. Aldawoud, I. Ucak, and N. J. Rowan. 2021. Innovations and technology disruptions in the food sector within the covid-19 pandemic and post-lockdown era. Trends in Food Science & Technology 110:193–200. doi: 10.1016/j.tifs.2021.02.002.
  • Ganjyal, G., M. A. Hanna, P. Supprung, A. Noomhorm, and D. Jones. 2006. Modeling selected properties of extruded rice flour and rice starch by neural networks and statistics. Cereal Chemistry Journal 83 (3):3: 223–227. doi: 10.1094/CC-83-0223.
  • Garcia-Amezquita, L. E., V. Tejada-Ortigoza, S. O. Serna-Saldivar, and J. Welti-Chanes. 2018. Dietary fiber concentrates from fruit and vegetable by-products: Processing, modification, and application as functional ingredients. Food and Bioprocess Technology 11 (8):1439–63. doi: 10.1007/s11947-018-2117-2.
  • Gautam, A., and G. S. Choudhury. 1999. Screw configuration effects on starch breakdown during twin-screw extrusion of rice flour. Journal of Food Processing and Preservation 23 (5):5: 355–375. doi: 10.1111/j.1745-4549.1999.tb00391.x.
  • Grahl, S., M. Strack, R. Weinrich, and D. Mörlein. 2018. Consumer-oriented product development: The conceptualization of novel food products based on spirulina (Arthrospira platensis) and resulting consumer expectations. Journal of Food Quality 2018:1–11. doi: 10.1155/2018/1919482.
  • Grasso, S. 2020. Extruded snacks from industrial by-products: A review. Trends in Food Science & Technology 99:284–94. doi: 10.1016/j.tifs.2020.03.012.
  • Gray, D. A., S. E. Bowen, I. Farhat, and S. E. Hill. 2008. Lipid oxidation in glassy and rubbery-state starch extrudates. Food Chemistry 106 (1):227–34. doi: 10.1016/j.foodchem.2007.05.095.
  • Gu, B.-Y., R. J. Kowalski, and G. M. Ganjyal. 2017. Food extrusion processing: An overview.
  • Guiao, K. S., A. Gupta, C. Tzoganakis, and T. H. Mekonnen. 2022. Reactive extrusion as a sustainable alternative for the processing and valorization of biomass components. Journal of Cleaner Production 355:131840. doi: 10.1016/j.jclepro.2022.131840.
  • Guiné, R. P. F., S. G. Florença, M. J. Barroca, and O. Anjos. 2020. The link between the consumer and the innovations in food product development. Foods (Basel, Switzerland) 9:1317.
  • Guyony, V., F. Fayolle, and V. Jury. 2022. High moisture extrusion of vegetable proteins for making fibrous meat analogs: A review. Food Reviews International 38:1–26. doi: 10.1080/87559129.2021.2023816.
  • Hassan, K., M. J. Nine, T. T. Tung, N. Stanley, P. L. Yap, H. Rastin, L. Yu, and D. Losic. 2020. Functional inks and extrusion-based 3D printing of 2D materials: A review of current research and applications. Nanoscale 12 (37):19007–42. doi: 10.1039/d0nr04933f.
  • Häusling, M., B. Biteau, S. Wiener, P. Holmgren, T. Metz, and F. Guerreiro. 2022. Motion for a resolution on the need for urgent eu action to ensure food security in light of russian aggression against ukraine, and a long-term action plan on developing eu food autonomy (2022/2593(rsp)). European parliament. https://www.Europarl.Europa.Eu/doceo/document/b-9-2022-0167_en.Html. European Parliament.
  • Holland, S., T. Foster, W. Macnaughtan, and C. Tuck. 2018. Design and characterisation of food grade powders and inks for microstructure control using 3d printing. Journal of Food Engineering 220:12–9. doi: 10.1016/j.jfoodeng.2017.06.008.
  • Hoyos-Concha, J. L., H. S. Villada-Castillo, A. Fernández-Quintero, and R. Ortega-Toro. 2021. Rheological study of an extruded fish diet with the addition of hydrolyzed protein flour. Applied Sciences 11 (17):8105. doi: 10.3390/app11178105.
  • Huang, Y.-L, and Y.-S. Ma. 2016. The effect of extrusion processing on the physiochemical properties of extruded orange pomace. Food Chemistry 192:363–9. doi: 10.1016/j.foodchem.2015.07.039.
  • Hussain, S., S. Malakar, and V. K. Arora. 2022. Extrusion-based 3d food printing: Technological approaches, material characteristics, printing stability, and post-processing. Food Engineering Reviews 14 (1):1: 100–119. doi: 10.1007/s12393-021-09293-w.
  • Hyvärinen, M., R. Jabeen, and T. Kärki. 2020. The modelling of extrusion processes for polymers-a review. Polymers 12 (6):1306. doi: 10.3390/polym12061306.
  • Ilo, S., R. Schoenlechner, and E. Berghofe. 2000. Role of lipids in the extrusion cooking processes. Grasas y Aceites 51 (1-2):97–110. doi: 10.3989/gya.2000.v51.i1-2.410.
  • Ishimoto, K., Y. Shimada, A. Ohno, S. Otani, Y. Ago, S. Maeda, B. Lin, K. Nunomura, N. Hino, M. Suzuki, et al. 2022. Physicochemical and biochemical evaluation of amorphous solid dispersion of naringenin prepared using hot-melt extrusion. Frontiers in Nutrition 9:850103. doi: 10.3389/fnut.2022.850103.
  • Ismail, B. P., L. Senaratne-Lenagala, A. Stube, and A. Brackenridge. 2020. Protein demand: Review of plant and animal proteins used in alternative protein product development and production. Animal Frontiers 10 (4):53–63. doi: 10.1093/af/vfaa040.
  • Jiang, Q., M. Zhang, and A. S. Mujumdar. 2022. Novel evaluation technology for the demand characteristics of 3d food printing materials: A review. Critical Reviews in Food Science and Nutrition 62 (17):4669–83.
  • Kantanen, K., A. Oksanen, M. Edelmann, H. Suhonen, T. Sontag-Strohm, V. Piironen, J. M. R. Diaz, and K. Jouppila. 2022. Physical properties of extrudates with fibrous structures made of faba bean protein ingredients using high moisture extrusion. Foods 11 (9):1280. doi: 10.3390/foods11091280.
  • Kavimughil, M., M. M. Leena, J. A. Moses, and C. Anandharamakrishnan. 2022. Effect of material composition and 3d printing temperature on hot-melt extrusion of ethyl cellulose based medium chain triglyceride oleogel. Journal of Food Engineering 329:111055. doi: 10.1016/j.jfoodeng.2022.111055.
  • Kendler, C., A. Duchardt, H. P. Karbstein, and M. A. Emin. 2021. Effect of oil content and oil addition point on the extrusion processing of wheat gluten-based meat analogues. Foods 10 (4):697.
  • Kerezsi, A. D., N. Jacquet, and C. Blecker. 2022. Advances on physical treatments for soy allergens reduction – a review. Trends in Food Science & Technology 122:24–39. doi: 10.1016/j.tifs.2022.02.007.
  • Kewuyemi, Y. O., H. Kesa, and O. A. Adebo. 2022. Trends in functional food development with three-dimensional (3d) food printing technology: Prospects for value-added traditionally processed food products. Critical Reviews in Food Science and Nutrition 62 (28):7866–904.
  • Knezevic, N., S. Grbavac, M. Palfi, M. B. Sabolović, and S. R. Brnčić. 2021. Novel food legislation and consumer acceptance – importance for the food industry. Emirates Journal of Food and Agriculture 33 (2):93–100.
  • Knoch, A. 2016. Production of restructured meatlike products by high moisture extrusion technology. In Reference module in food science. Amsterdam: Elsevier.
  • Koch, L., L. Hummel, H. P. Schuchmann, and M. A. Emin. 2018. Improving the emulsifying properties of whey protein isolate-citrus pectin blends by a novel reactive extrusion approach. Journal of Food Engineering 223:175–88. doi: 10.1016/j.jfoodeng.2017.10.027.
  • Kohlgrüber, K. 2012. Co-rotating twin-screw extruder. Munich: Carl Hanser Verlag GmbH & Company KG. https://books.google.gr/books?id=gK9PAgAAQBAJ.
  • Kojić, J., M. Belović, J. Krulj, L. Pezo, N. Teslić, P. Kojić, L. P. Tukuljac, V. Šeregelj, and N. Ilić. 2022. Textural, color and sensory features of spelt wholegrain snack enriched with betaine. Foods 11 (3):475. doi: 10.3390/foods11030475.
  • Kostic, M. M, and L. G. Reifschneider. 2006. Design of extrusion dies. In Encyclopedia of chemical processing, edited by S. Lee, 633–49. Oxfordshire, United Kingdom: Taylor & Francis.
  • Kristiawan, M, and G. D. Valle. 2020. Chapter 6 – transport phenomena and material changes during extrusion. In Extrusion cooking, ed. G. M. Ganjyal, 179–204. Sawston: Woodhead Publishing.
  • Kristiawan, M., L. Chaunier, A. J. Sandoval, and G. D. Valle. 2020. 7 – extrusion—cooking and expansion. In Breakfast cereals and how they are made, 3rd ed., edited by A. A. Perdon, S. L. Schonauer, and K. S. Poutanen, 141–67. Oxford: AACC International Press.
  • Kristiawan, M., L. Chaunier, G. D. Valle, A. Ndiaye, and B. Vergnes. 2016. Modeling of starchy melts expansion by extrusion. Trends in Food Science & Technology 48:13–26. doi: 10.1016/j.tifs.2015.11.004.
  • Kristiawan, M., V. Micard, P. Maladira, C. Alchamieh, J. E. Maigret, A. L. Réguerre, M. A. Emin, and G. D. Valle. 2018. Multi-scale structural changes of starch and proteins during pea flour extrusion. Food Research International (Ottawa, Ont.) 108:203–15. doi: 10.1016/j.foodres.2018.03.027.
  • Lazou, A, and M. K. Krokida. 2017. Extrusion for microencapsulation. In Thermal and nonthermal encapsulation methods, 1st ed., edited by M. K. Krokida, 137–71. Boca Raton, Florida: CRC Press.
  • Lazou, A, and M. Krokida. 2010a. Structural and textural characterization of corn–lentil extruded snacks. Journal of Food Engineering 100 (3):3: 392–408. doi: 10.1016/j.jfoodeng.2010.04.024.
  • Lazou, A., and M. Krokida. 2011. Thermal characterisation of corn–lentil extruded snacks. Food Chemistry 127 (4):1625–33. doi: 10.1016/j.foodchem.2011.02.029.
  • Lazou, A. E, and M. Krokida. 2010b. Functional properties of corn and corn–lentil extrudates. Food Research International 43 (2):609–16. doi: 10.1016/j.foodres.2009.09.017.
  • Lazou, A. E., P. A. Michailidis, S. Thymi, M. K. Krokida, and G. I. Bisharat. 2007. Structural properties of corn-legume based extrudates as a function of processing conditions and raw material characteristics. International Journal of Food Properties 10 (4):721–38. doi: 10.1080/10942910601154305.
  • Le-Bail, A., B. C. Maniglia, and P. Le-Bail. 2020. Recent advances and future perspective in additive manufacturing of foods based on 3d printing. Current Opinion in Food Science 35:54–64. doi: 10.1016/j.cofs.2020.01.009.
  • Lee, J. 2021. A 3D food printing process for the new normal era: A review. Processes 9 (9):1495. doi: 10.3390/pr9091495.
  • Lei, H., R. Ruan, R. G. Fulcher, and B. V. Lengerich. 2008. Color development in an extrusion-cooked model system. International Journal of Agricultural and Biological Engineering 1 (2):55–64.
  • Leonard, W., P. Zhang, D. Ying, and Z. Fang. 2020. Application of extrusion technology in plant food processing byproducts: An overview. Comprehensive Reviews in Food Science and Food Safety 19 (1): 218–46. doi: 10.1111/1541-4337.12514.
  • Levine, L, and S. Levine. 2020. Chapter 11 – scale-up, experimentation, and data evaluation. In Extrusion cooking, edited by G. M. Ganjyal, 331–89. Sawston, Cambridge: Woodhead Publishing.
  • Lewandowski, A, and K. Wilczyński. 2022. Modeling of twin screw extrusion of polymeric materials. Polymers 14 (2):274. doi: 10.3390/polym14020274.
  • Lille, M., A. Nurmela, E. Nordlund, S. Metsä-Kortelainen, and N. Sozer. 2018. Applicability of protein and fiber-rich food materials in extrusion-based 3d printing. Journal of Food Engineering 220:20–7. doi: 10.1016/j.jfoodeng.2017.04.034.
  • Lin, S., H. E. Huff, and F. Hsieh. 2002. Extrusion process parameters, sensory characteristics, and structural properties of a high moisture soy protein meat analog. Journal of Food Science 67 (3):1066–72. doi: 10.1111/j.1365-2621.2002.tb09454.x.
  • Liu, K., and F.-H. Hsieh. 2008. Protein–protein interactions during high-moisture extrusion for fibrous meat analogues and comparison of protein solubility methods using different solvent systems. Journal of Agricultural and Food Chemistry 56 (8):2681–7.
  • Liu, Y., M. Liu, S. Huang, and Z. Zhang. 2021. Optimisation of the extrusion process through a response surface methodology for improvement of the physical properties and nutritional components of whole black-grained wheat flour. Foods 10 (2):437. doi: 10.3390/foods10020437.
  • Ma, H., M. Liu, Y. Liang, X. Zheng, L. Sun, W. Dang, J. Li, L. Li, and C. Liu. 2022. Research progress on properties of pre-gelatinized starch and its application in wheat flour products. Grain & Oil Science and Technology 5 (2):87–97. doi: 10.1016/j.gaost.2022.01.001.
  • Ma, Y., M. A. Schutyser, R. M. Boom, and L. Zhang. 2021. Predicting the extrudability of complex food materials during 3d printing based on image analysis and gray-box data-driven modelling. Innovative Food Science & Emerging Technologies 73:102764. doi: 10.1016/j.ifset.2021.102764.
  • MaNiruzzaman, M., J. S. Boateng, M. J. Snowden, and D. Douroumis. 2012. A review of hot-melt extrusion: Process technology to pharmaceutical products. ISRN Pharmaceutics 2012:436763. doi: 10.5402/2012/436763.
  • Mantovan, J., F. Yamashita, and S. Mali. 2022. Modification of orange bagasse with reactive extrusion to obtain cellulose-based materials. Polysaccharides 3 (2):401–10. doi: 10.3390/polysaccharides3020024.
  • MarketsandMarkets™ INC. 2022. Food extrusion market by extruder (single screw, twin screw, and contra twin screw), process (cold and hot), product type (savory snacks, breakfast cereals, bread, flours & starches, and textured protein), and region – global forecast to 2026. https://www.marketsandmarkets.com/Market-Reports/food-extrusion-market-221423108.html.
  • Martin, A., R. Osen, H. P. Karbstein, and M. A. Emin. 2021. Linking expansion behaviour of extruded potato starch/rapeseed press cake blends to rheological and technofunctional properties. Polymers 13 (2):215. doi: 10.3390/polym13020215.
  • Martin, C. 2016. Twin screw extruders as continuous mixers for thermal processing: A technical and historical perspective. AAPS PharmSciTech 17 (1):3–19.
  • Mccarthy, B., A. B. Kapetanaki, and P. Wang. 2019. Circular agri-food approaches: Will consumers buy novel products made from vegetable waste? Rural Society 28 (2):91–107. doi: 10.1080/10371656.2019.1656394.
  • Mcguire, C., K. Siliveru, K. Ambrose, and S. Alavi. 2022. Food powder flow in extrusion: Role of particle size and composition. Processes 10 (1):178. doi: 10.3390/pr10010178.
  • Mitrus, M., A. Wójtowicz, S. Kocira, A. Kasprzycka, A. Szparaga, T. Oniszczuk, M. Combrzyński, K. Kupryaniuk, and A. Matwijczuk. 2020. Effect of extrusion-cooking conditions on the pasting properties of extruded white and red bean seeds. International Agrophysics 34 (1):25–32.
  • Moad, G. 2011. Chemical modification of starch by reactive extrusion. Progress in Polymer Science 36 (2):2: 218–237. doi: 10.1016/j.progpolymsci.2010.11.002.
  • Morales Alvarez, J. C. 2020. Chapter 2 – engineering aspects of extrusion: Extrusion processing as a multiple-input and multiple-output system. In Extrusion cooking, edited by G. M. Ganjyal, 29–71. Sawston, Cambridge: Woodhead Publishing.
  • Moraru, C. I, and J. L. Kokini. 2003. Nucleation and expansion during extrusion and microwave heating of cereal foods. Comprehensive Reviews in Food Science and Food Safety 2 (4):147–165.
  • Moscicki, L., M. Mitrus, A. Wojtowicz, T. Oniszczuk, and A. Rejak. 2013. Extrusion-cooking of starch. In Advances in agrophysical research, edited by S. Grundas, and A. Stepniewski, 1–28. Vienna, Austria: InTech.
  • Mosibo, O. K., G. Ferrentino, M. R. Alam, K. Morozova, and M. Scampicchio. 2022. Extrusion cooking of protein-based products: Potentials and challenges. Critical Reviews in Food Science and Nutrition 62 (9):2526–47.
  • Muthukumarappan, K., and C. Karunanithy. 2012. Extrusion process design. In Handbook of food process design, 710–42. New Jersey: John Wiley & Sons.
  • Nayak, A, and B. Bhushan. 2019. An overview of the recent trends on the waste valorization techniques for food wastes. Journal of Environmental Management 233:352–70. doi: 10.1016/j.jenvman.2018.12.041.
  • Nezlek, J. B, and C. A. Forestell. 2019. Food neophobia and the five factor model of personality. Food Quality and Preference 73:210–4. doi: 10.1016/j.foodqual.2018.11.007.
  • Nisov, A., H. Aisala, U. Holopainen-Mantila, H.-L. Alakomi, E. Nordlund, and K. Honkapää. 2020. Comparison of whole and gutted baltic herring as a raw material for restructured fish product produced by high-moisture extrusion cooking. Foods 9 (11):1541. doi: 10.3390/foods9111541.
  • Offiah, V., V. Kontogiorgos, and K. O. Falade. 2019. Extrusion processing of raw food materials and by-products: A review. Critical Reviews in Food Science and Nutrition: 1-20 59 (18):2979–98. doi: 10.1080/10408398.2018.1480007.
  • Onwulata, C.I., M.H. Tunick and P.X. Qi. 2011. Chapter 5 – extrusion texturized dairy proteins: Processing and application. In Advances in food and nutrition research, edited by L. T. Steve, 173–200. Cambridge, Massachusetts: Academic Press.
  • Oonsivilai, A, and R. Oonsivilai. 2008. Parameter estimation of frequency response twin-screw food extrusion process using genetic algorithms. WTOS 7 (11):1207–17.
  • Osen, R., S. Toelstede, F. Wild, P. Eisner, and U. Schweiggert-Weisz. 2014. High moisture extrusion cooking of pea protein isolates: Raw material characteristics, extruder responses, and texture properties. Journal of Food Engineering 127:67–74. doi: 10.1016/j.jfoodeng.2013.11.023.
  • Padmanabhan, B. 2008. Understanding the extruder processing zone: The heart of a twin screw extruder. Plastics, Additives and Compounding 10 (2):30–5. doi: 10.1016/S1464-391X(08)70058-8.
  • Patil, S. S, and C. Kaur. 2018. Current trends in extrusion: Development of functional foods and novel ingredients. Food Science and Technology Research 24 (1):23–34. doi: 10.3136/fstr.24.23.
  • Pereira, J. F., B. M. Marim, and S. Mali. 2022. Chemical modification of cellulose using a green route by reactive extrusion with citric and succinic acids. Polysaccharides 3 (1):292–305. doi: 10.3390/polysaccharides3010017.
  • Pietsch, V. L., J. M. Bühler, H. P. Karbstein, and M. A. Emin. 2019. High moisture extrusion of soy protein concentrate: Influence of thermomechanical treatment on protein-protein interactions and rheological properties. Journal of Food Engineering 251:11–8. doi: 10.1016/j.jfoodeng.2019.01.001.
  • Pitts, K. F., J. Favaro, P. Austin, and L. Day. 2014. Co-effect of salt and sugar on extrusion processing, rheology, structure and fracture mechanical properties of wheat–corn blend. Journal of Food Engineering 127:58–66. doi: 10.1016/j.jfoodeng.2013.11.026.
  • Porretta, S. 2021. Chapter 1 food development: The sensory & consumer approach. In Consumer-based new product development for the food industry, 1–20. London, UK: The Royal Society of Chemistry.
  • Prabha, K., P. Ghosh, A. S, R. M. Joseph, R. Krishnan, S. S. Rana, and R. C. Pradhan. 2021. Recent development, challenges, and prospects of extrusion technology. Future Foods 3:100019. doi: 10.1016/j.fufo.2021.100019.
  • Rao, S. K, and W. E. Artz. 1989. Effect of extrusion on lipid oxidation. Journal of Food Science 54 (6):1580–3. doi: 10.1111/j.1365-2621.1989.tb05164.x.
  • Raquez, J.-M., R. Narayan, and P. Dubois. 2008. Recent advances in reactive extrusion processing of biodegradable polymer-based compositions. Macromolecular Materials and Engineering 293 (6):447–70. doi: 10.1002/mame.200700395.
  • Rathore, A. S, and G. Kapoor. 2017. Implementation of quality by design toward processing of food products. Preparative Biochemistry & Biotechnology 47 (5): 435–40. doi: 10.1080/10826068.2017.1315601.
  • Riaz, M. N. 2004. 22 – texturized soy protein as an ingredient. In Proteins in food processing, edited by R. Y. Yada, 517–58. Sawston, Cambridge: Woodhead Publishing.
  • Riaz, M. N. 2011. 15 – texturized vegetable proteins. In Handbook of food proteins, edited by G. O. Phillips and P. A. Williams, 395–418. Sawston, Cambridge: Woodhead Publishing.
  • Riaz, M. N. 2019. Chapter 19 – food extruders. In Handbook of farm, dairy and food machinery engineering, 3rd ed., edited by M. Kutz, 483–97. Cambridge, Massachusetts: Academic Press.
  • Robin, F., C. Dubois, N. Pineau, H. P. Schuchmann, and S. Palzer. 2011. Expansion mechanism of extruded foams supplemented with wheat bran. Journal of Food Engineering 107 (1):80–9. doi: 10.1016/j.jfoodeng.2011.05.041.
  • Robin, F., H. P. Schuchmann, and S. Palzer. 2012. Dietary fiber in extruded cereals: Limitations and opportunities. Trends in Food Science & Technology 28 (1):23–32. doi: 10.1016/j.tifs.2012.06.008.
  • Rocha-Guzman, N. E., J. A. Gallegos-Infante, R. F. Gonzalez-Laredo, A. Bello-Perez, E. Delgado-Licon, A. Ochoa-Martinez, and M. J. Prado-Ortiz. 2008. Physical properties of extruded products from three mexican common beans (phaseolus vulgaris l.) cultivars. Plant Foods for Human Nutrition (Dordrecht, Netherlands) 63 (3):99–104.
  • Ruiz-Gutiérrez, M., M. Á. Sánchez-Madrigal, and A. Quintero-Ramos. 2017. The extrusion cooking process for the development of functional foods. In In extrusion of metals, polymers, and food products, edited by S. Qamar, 83–102. London: IntechOpen.
  • Sahu, C., S. Patel, and A. K. Tripathi. 2022. Effect of extrusion parameters on physical and functional quality of soy protein enriched maize based extruded snack. Applied Food Research 2 (1):100072. doi: 10.1016/j.afres.2022.100072.
  • Sandhu, R. S., N. Singh, R. Kaler, and B. Singh. 2019. Optimization of process parameters for preparation of rice extrudates from short and long indica rice cultivars milled to varying degree of milling. Journal of Food Science and Technology 56 (5):2467–79. doi: 10.1007/s13197-019-03724-7.
  • Sandoval Murillo, J. L., R. Osen, S. Hiermaier, and G. Ganzenmüller. 2019. Towards understanding the mechanism of fibrous texture formation during high-moisture extrusion of meat substitutes. Journal of Food Engineering 242:8–20. doi: 10.1016/j.jfoodeng.2018.08.009.
  • Santo, R. E., B. F. Kim, S. E. Goldman, J. Dutkiewicz, E. M. B. Biehl, M. W. Bloem, R. A. Neff, and K. E. Nachman. 2020. Considering plant-based meat substitutes and cell-based meats: A public health and food systems perspective. Frontiers in Sustainable Food Systems 4 doi: 10.3389/fsufs.2020.00134.
  • Šárka, E., M. Sluková, and P. Smrčková. 2020. New food compositions to increase the content of phenolic compounds in extrudates. Czech Journal of Food Sciences 38 ( 6):347–58. doi: 10.17221/223/2020-CJFS.
  • Seker, M. 2005. Residence time distributions of starch with high moisture content in a single – screw extruder. Journal of Food Engineering 67 (3):317–24. doi: 10.1016/j.jfoodeng.2004.04.034.
  • Seth, D., L. S. Badwaik, and V. Ganapathy. 2015. Effect of feed composition, moisture content and extrusion temperature on extrudate characteristics of yam-corn-rice based snack food. Journal of Food Science and Technology 52 (3): 1830–8.
  • Severini, C., A. Derossi, I. Ricci, R. Caporizzi, and A. Fiore. 2018. Printing a blend of fruit and vegetables. New advances on critical variables and shelf life of 3d edible objects. Journal of Food Engineering 220:89–100. doi: 10.1016/j.jfoodeng.2017.08.025.
  • Shah, A, and M. Gupta. 2004. Comparison of the flow in co-rotating and counter-rotating twin screw extruders. Antec 50:443–7.
  • Singh, B., C. Sharma, and S. Sharma. 2017. Fundamentals of extrusion processing. In Novel food processing technologies, edited by V. Nanda, and S. Sharma, New Delhi: New India Publishing Agency.
  • Singha, P., K. Muthukumarappan, and P. Krishnan. 2018. Influence of processing conditions on apparent viscosity and system parameters during extrusion of distiller’s dried grains-based snacks. Food Science & Nutrition 6 (1):1: 101–110.
  • Smetana, S., C. Pernutz, S. Toepfl, V. Heinz, and L. V. Campenhout. 2019. High-moisture extrusion with insect and soy protein concentrates: Cutting properties of meat analogues under insect content and barrel temperature variations. Journal of Insects as Food and Feed 5 (1):29–34. doi: 10.3920/JIFF2017.0066.
  • Spratt, O., R. Suri, and J. Deutsch. 2021. Defining upcycled food products. Journal of Culinary Science & Technology 19 (6):485–96. doi: 10.1080/15428052.2020.1790074.
  • Steel, C. J., M. G. Vernaza, M. Schmiele, R. E. Ferreira, and Y. K. Chang. 2012. Thermoplastic extrusion in food processing. In Thermoplastic elastomers, edited by A. Z. El-Sonbati, 265–90. London, UK: IntechOpen.
  • Sun, J., W. Zhou, L. Yan, D. Huang, and L.-Y. Lin. 2018. Extrusion-based food printing for digitalized food design and nutrition control. Journal of Food Engineering 220:1–11. doi: 10.1016/j.jfoodeng.2017.02.028.
  • Tan, C., W. Y. Toh, G. Wong, and L. Li. 2018. Extrusion-based 3d food printing – materials and machines. International Journal of Bioprinting 4 (2):143–
  • Tiwari, A, and S. K. Jha. 2017. Extrusion cooking technology: Principal mechanism and effect on direct expanded snacks – an overview. International Journal of Food Studies 6:113–28.
  • Tiwari, A. 2018. Extrusion cooking technology: An advance skill for manufacturing of extrudate food products. In In extrusion of metals, polymers, and food products, edited by S. Qamar, London: IntechOpen.
  • Tomašević, I., P. Putnik, F. Valjak, B. Pavlić, B. Šojić, A. Bebek Markovinović, and D. Bursać Kovačević. 2021. 3d printing as novel tool for fruit-based functional food production. Current Opinion in Food Science 41:138–45. doi: 10.1016/j.cofs.2021.03.015.
  • Ulrich, K. T., S. D. Eppinger, and M. C. Yang. 2020. Product design and development, 7th ed. New York: McGraw Hill Education.
  • Ververis, E., R. Ackerl, D. Azzollini, P. A. Colombo, A. De Sesmaisons, C. Dumas, A. Fernandez-Dumont, L. Ferreira Da Costa, A. Germini, T. Goumperis, et al. 2020. Novel foods in the european union: Scientific requirements and challenges of the risk assessment process by the European food safety authority. Food Research International (Ottawa, Ont.) 137:109515. doi: 10.1016/j.foodres.2020.109515.
  • Voon, S. L., J. An, G. Wong, Y. Zhang, and C. K. Chua. 2019. 3d food printing: A categorised review of inks and their development. Virtual and Physical Prototyping 14 (3): 203–18. doi: 10.1080/17452759.2019.1603508.
  • Wang, S., B.-J. Gu, and G. M. Ganjyal. 2019. Impacts of the inclusion of various fruit pomace types on the expansion of corn starch extrudates. LWT 110:223–30. doi: 10.1016/j.lwt.2019.03.094.
  • Wang, S., C. Chao, J. Cai, B. Niu, L. Copeland, and S. Wang. 2020. Starch–lipid and starch–lipid–protein complexes: A comprehensive review. Comprehensive Reviews in Food Science and Food Safety 19 (3):1056–79. doi: 10.1111/1541-4337.12550.
  • Wittek, P., H. P. Karbstein, and M. A. Emin. 2021a. Blending proteins in high moisture extrusion to design meat analogues: Rheological properties, morphology development and product properties. Foods 10 (7):1509. doi: 10.3390/foods10071509.
  • Wittek, P., N. Zeiler, H. P. Karbstein, and M. A. Emin. 2021b. High moisture extrusion of soy protein: Investigations on the formation of anisotropic product structure. Foods (Basel, Switzerland) 10 (1):102.
  • Wolz, M, and U. Kulozik. 2017. System parameters in a high moisture extrusion process for microparticulation of whey proteins. Journal of Food Engineering 209:12–7. doi: 10.1016/j.jfoodeng.2017.04.010.
  • Wu, W., A. Jiao, E. Xu, Y. Chen, and Z. Jin. 2020. Effects of extrusion technology combined with enzymatic hydrolysis on the structural and physicochemical properties of porous corn starch. Food and Bioprocess Technology 13 (3):442–51. doi: 10.1007/s11947-020-02404-1.
  • Xia, S., Y. Xue, C. Xue, X. Jiang, and J. Li. 2022. Structural and rheological properties of meat analogues from haematococcus pluvialis residue-pea protein by high moisture extrusion. Lwt 154:112756. doi: 10.1016/j.lwt.2021.112756.
  • Xu, E., O. H. Campanella, X. Ye, Z. Jin, D. Liu, and J. N. Bemiller. 2020. Advances in conversion of natural biopolymers: A reactive extrusion (rex)–enzyme-combined strategy for starch/protein-based food processing. Trends in Food Science & Technology 99:167–80. doi: 10.1016/j.tifs.2020.02.018.
  • Yacu, W. 2020. Chapter 3 – extruder screw, barrel, and die assembly: General design principles and operation. In Extrusion cooking, ed. G. M. Ganjyal, 73–117. Sawston: Woodhead Publishing.
  • Yacu, W. A. 2012. Extruder selection, design, and operation for different food applications. In Advances in food extrusion technology, edited by M. Maskan, and A. Altan, 23–67. Boca Raton, FL: CRC Press.
  • Yang, R., J. Zhou, C. Yang, L. Qiu, and H. Cheng. 2020. Recent progress in 3d printing of 2d material-based macrostructures. Advanced Materials Technologies 5 (9):1–21. doi: 10.1002/admt.201901066.
  • Ye, J., X. Hu, S. Luo, W. Liu, J. Chen, Z. Zeng, and C. Liu. 2018. Properties of starch after extrusion: A review. Starch – Stärke 70 (11-12):1700110. doi: 10.1002/star.201700110.
  • Yu, L., Y. Meng, H. S. Ramaswamy, and J. Boye. 2014. Residence time distribution of soy protein isolate and corn flour feed mix in a twin-screw extruder. Journal of Food Processing and Preservation 38 (1):573–84. doi: 10.1111/jfpp.12005.
  • Zhang, B., Y. Zhang, J. Dreisoerner, and Y. Wei. 2015. The effects of screw configuration on the screw fill degree and special mechanical energy in twin-screw extruder for high-moisture texturised defatted soybean meal. Journal of Food Engineering 157:77–83. doi: 10.1016/j.jfoodeng.2015.02.019.
  • Zhang, J., L. Liu, H. Liu, A. Yoon, S. S. H. Rizvi, and Q. Wang. 2019. Changes in conformation and quality of vegetable protein during texturization process by extrusion. Critical Reviews in Food Science and Nutrition 59 (20):3267–80.
  • Zhang, Z., L. Zhang, S. He, X. Li, R. Jin, Q. Liu, S. Chen, and H. Sun. 2022. High-moisture extrusion technology application in the processing of textured plant protein meat analogues: A review. Food Reviews International 38:1–36. doi: 10.1080/87559129.2021.2024223.
  • Zhao, X., Y. Wei, Z. Wang, F. Chen, and A. O. Ojokoh. 2011. Reaction kinetics in food extrusion: Methods and results. Critical Reviews in Food Science and Nutrition 51 (9):835–54.
  • Zhao, Y., C. Zhao, X. Tang, J. Zhou, H. Li, H. Zhang, and J. Liu. 2021. Physicochemical properties and microstructure of corn flour–cellulose fiber extrudates. Food Science & Nutrition 9 (5):2497–507.
  • Zheng, H., G. Yan, Y. Lee, C. Alcaraz, S. Marquez, and E. G. De Mejia. 2020. Effect of the extrusion process on allergen reduction and the texture change of soybean protein isolate-corn and soybean flour-corn mixtures. Innovative Food Science & Emerging Technologies 64:102421. doi: 10.1016/j.ifset.2020.102421.
  • Zhong, L., Z. Fang, M. L. Wahlqvist, J. M. Hodgson, and S. K. Johnson. 2019. Extrusion cooking increases soluble dietary fibre of lupin seed coat. Lwt 99:547–54. doi: 10.1016/j.lwt.2018.10.018.
  • Zhu, S., M. A. Stieger, A. J. Van Der Goot, M, and a Schutyser. 2019. Extrusion-based 3d printing of food pastes: Correlating rheological properties with printing behaviour. Innovative Food Science & Emerging Technologies 58:102214. doi: 10.1016/j.ifset.2019.102214.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.