599
Views
0
CrossRef citations to date
0
Altmetric
Reviews

Delivery systems for fucoxanthin: Research progress, applications and future prospects

, ORCID Icon &

References

  • Agung Wibowo, A., Heriyanto, Y. Shioi, L. Limantara, T. H. P. Brotosudarmo. 2022. Simultaneous purification of fucoxanthin isomers from brown seaweeds by open-column and high-performance liquid chromatography. Journal of Chromatography. B, Analytical Technologies in the Biomedical and Life Sciences 1193:123166. doi: 10.1016/j.jchromb.2022.123166.
  • Alghazwi, M., S. Smid, I. Musgrave, and W. Zhang. 2019. In vitro studies of the neuroprotective activities of astaxanthin and fucoxanthin against amyloid beta (Aβ1-42) toxicity and aggregation. Neurochemistry International 124:215–24. doi: 10.1016/j.neuint.2019.01.010.
  • Arshad, S., Masood-Ur-Rehman, M. H. Asim, A. Mahmood, M. Ijaz, Alamgeer, H. M. Irfan, F. Anwar, and M. Y. Ali. 2022. Calycosin-loaded nanostructured lipid carriers: In-vitro and in-vivo evaluation for enhanced anti-cancer potential. Journal of Drug Delivery Science and Technology 67:102957. doi: 10.1016/j.jddst.2021.102957.
  • Aslanbay Guler, B., I. Deniz, Z. Demirel, O. Yesil-Celiktas, and E. Imamoglu. 2020. A novel subcritical fucoxanthin extraction with a biorefinery approach. Biochemical Engineering Journal 153:107403. doi: 10.1016/j.bej.2019.107403.
  • Beppu, F., Y. Niwano, T. Tsukui, M. Hosokawa, and K. Miyashita. 2009. Single and repeated oral dose toxicity study of fucoxanthin (FX), a marine carotenoid, in mice. The Journal of Toxicological Sciences 34 (5):501–10. doi: 10.2131/jts.34.501.
  • Cervantes-Paz, B., J. J. Ornelas-Paz, S. Ruiz-Cruz, C. Rios-Velasco, V. Ibarra-Junquera, E. M. Yahia, and A. A. Gardea-Béjar. 2017. Effects of pectin on lipid digestion and possible implications for carotenoid bioavailability during pre-absorptive stages: A review. Food Research International (Ottawa, ON) 99 (Pt 2):917–27. doi: 10.1016/j.foodres.2017.02.012.
  • Chen, Y., N. He, T. Yang, S. Cai, Y. Zhang, J. Lin, M. Huang, W. Chen, Y. Zhang, and Z. Hong. 2022. Fucoxanthin loaded in palm stearin‐ and cholesterol‐based solid lipid nanoparticle‐microcapsules, with improved stability and bioavailability in vivo. Marine Drugs 20 (4):237. doi: 10.3390/md20040237.
  • Dai, J., and J. C. Kim. 2016. In vivo anti-obesity efficacy of fucoxanthin-loaded emulsions stabilized with phospholipid. Journal of Pharmaceutical Investigation 46 (7):669–75. doi: 10.1007/s40005-016-0270-z.
  • Dai, J., S. M. Kim, I. S. Shin, J. D. Kim, H. Y. Lee, W. C. Shin, and J. C. Kim. 2014. Preparation and stability of fucoxanthin-loaded microemulsions. Journal of Industrial and Engineering Chemistry 20 (4):2103–10. doi: 10.1016/j.jiec.2013.09.039.
  • Dai, Y. L., Y. F. Jiang, Y. A. Lu, J. B. Yu, M. C. Kang, and Y. J. Jeon. 2021. Fucoxanthin-rich fraction from Sargassum fusiformis alleviates particulate matter-induced inflammation in vitro and in vivo. Toxicology Reports 8:349–58. doi: 10.1016/j.toxrep.2021.02.005.
  • de González, M. T. N., R. Attaie, A. Mora-Gutierrez, S. Woldesenbet, and Y. Jung. 2021. Stability of fucoxanthin in pasteurized skim and whole goat milk. Foods 10 (7):1647. doi: 10.3390/foods10071647.
  • Dhakal, S. P., and J. He. 2020. Microencapsulation of vitamins in food applications to prevent losses in processing and storage: A review. Food Research International (Ottawa, ON) 137:109326. doi: 10.1016/j.foodres.2020.109326.
  • Dong, Y., Z. Wei, and C. Xue. 2021. Recent advances in carrageenan-based delivery systems for bioactive ingredients: A review. Trends in Food Science & Technology 112:348–61. doi: 10.1016/j.tifs.2021.04.012.
  • Falleh, H., M. Ben Jemaa, M. A. Neves, H. Isoda, M. Nakajima, and R. Ksouri. 2021. Formulation, physicochemical characterization, and anti-E. coli activity of food-grade nanoemulsions incorporating clove, cinnamon, and lavender essential oils. Food Chemistry 359:129963. doi: 10.1016/j.foodchem.2021.129963.
  • Fernández-García, E., I. Carvajal-Lérida, M. Jarén-Galán, J. Garrido-Fernández, A. Pérez-Gálvez, and D. Hornero-Méndez. 2012. Carotenoids bioavailability from foods: From plant pigments to efficient biological activities. Food Research International 46 (2):438–50. doi: 10.1016/j.foodres.2011.06.007.
  • Foo, S. C., N. M. H. Khong, and F. M. Yusoff. 2020. Physicochemical, microstructure and antioxidant properties of microalgae-derived fucoxanthin rich microcapsules. Algal Research 51:102061. doi: 10.1016/j.algal.2020.102061.
  • Galogahi, F. M., Y. Zhu, H. An, and N. T. Nguyen. 2020. Core-shell microparticles: Generation approaches and applications. Journal of Science: Advanced Materials and Devices 5 (4):417–35. doi: 10.1016/j.jsamd.2020.09.001.
  • Gauthier, G., and I. Capron. 2021. Pickering nanoemulsions: An overview of manufacturing processes, formulations, and applications. JCIS Open 4:100036. doi: 10.1016/j.jciso.2021.100036.
  • Guo, J., P. Li, L. Kong, and B. Xu. 2020. Microencapsulation of curcumin by spray drying and freeze drying. LWT 132:109892. doi: 10.1016/j.lwt.2020.109892.
  • Ha, A. W., S. J. Na, and W. K. Kim. 2013. Antioxidant effects of fucoxanthin rich powder in rats fed with high fat diet. Nutrition Research and Practice 7 (6):475–80. doi: 10.4162/nrp.2013.7.6.475.
  • Hashimoto, T., Y. Ozaki, M. Taminato, S. K. Das, M. Mizuno, K. Yoshimura, T. Maoka, and K. Kanazawa. 2009. The distribution and accumulation of fucoxanthin and its metabolites after oral administration in mice. The British Journal of Nutrition 102 (2):242–8. doi: 10.1017/S0007114508199007.
  • Heo, S. J., W. J. Yoon, K. N. Kim, G. N. Ahn, S. M. Kang, D. H. Kang, A. Affan, C. Oh, W. K. Jung, and Y. J. Jeon. 2010. Evaluation of anti-inflammatory effect of fucoxanthin isolated from brown algae in lipopolysaccharide-stimulated RAW 264.7 macrophages. Food and Chemical Toxicology: An International Journal Published for the British Industrial Biological Research Association 48 (8–9):2045–51. doi: 10.1016/j.fct.2010.05.003.
  • Hitoe, S., and H. Shimoda. 2017. Seaweed fucoxanthin supplementation improves obesity parameters in mildly obese Japanese subjects. Functional Foods in Health and Disease 7 (4):246–62. doi: 10.31989/ffhd.v7i4.333.
  • Huang, Z., L. Xu, X. Zhu, J. Hu, H. Peng, Z. Zeng, and H. Xiong. 2017. Stability and bioaccessibility of fucoxanthin in nanoemulsions prepared from pinolenic acid-contained structured lipid. International Journal of Food Engineering 13 (1):20160273. doi: 10.1515/ijfe-2016-0273.
  • Ikeda, C., Y. Manabe, N. Tomonaga, T. Wada, T. Maoka, and T. Sugawara. 2020. Evaluation of intestinal absorption of dietary halocynthiaxanthin, a carotenoid from the sea squirt Halocynthia roretzi. Marine Drugs 18 (12):588. doi: 10.3390/md18120588.
  • Jaberifard, F., N. Arsalani, M. Ghorbani, and H. Mostafavi. 2022. Incorporating halloysite nanotube/carvedilol nanohybrids into gelatin microsphere as a novel oral pH-sensitive drug delivery system. Colloids and Surfaces A: Physicochemical and Engineering Aspects 637:128122. doi: 10.1016/j.colsurfa.2021.128122.
  • Jaiswal, J., A. K. Srivastav, R. Patel, and U. Kumar. 2022. Synthesis and physicochemical characterization of rhamnolipid fabricated fucoxanthin loaded bovine serum albumin nanoparticles supported by simulation studies. Journal of the Science of Food and Agriculture 102 (12):5468–77. doi: 10.1002/jsfa.11901.
  • Jaswir, I., D. Noviendri, M. Taher, F. Mohamed, F. Octavianti, W. Lestari, A. G. Mukti, S. Nirwandar, and B. B. Hamad Almansori. 2019. Optimization and formulation of fucoxanthin-loaded microsphere (F-LM) using response surface methodology (RSM) and analysis of its fucoxanthin release profile. Molecules 24 (5):947. doi: 10.3390/molecules24050947.
  • Jayari, A., F. Donsì, G. Ferrari, and A. Maaroufi. 2022. Nanoencapsulation of thyme essential oils: Formulation, characterization, storage stability, and biological activity. Foods 11 (13):1858. doi: 10.3390/foods11131858.
  • Karpiński, T. M., and A. Adamczak. 2019. Fucoxanthin—An antibacterial carotenoid. Antioxidants 8 (8):239. doi: 10.3390/antiox8080239.
  • Klettenhammer, S., G. Ferrentino, H. S. Zendehbad, K. Morozova, and M. Scampicchio. 2022. Microencapsulation of linseed oil enriched with carrot pomace extracts using Particles from Gas Saturated Solutions (PGSS) process. Journal of Food Engineering 312:110746. doi: 10.1016/j.jfoodeng.2021.110746.
  • Koo, S. Y., I. K. Mok, C. H. Pan, and S. M. Kim. 2016. Preparation of fucoxanthin-loaded nanoparticles composed of casein and chitosan with improved fucoxanthin bioavailability. Journal of Agricultural and Food Chemistry 64 (49):9428–35. doi: 10.1021/acs.jafc.6b04376.
  • Kotake-Nara, E., L. Yonekura, and A. Nagao. 2015. Lysoglyceroglycolipids improve the intestinal absorption of micellar fucoxanthin by Caco-2 cells. Journal of Oleo Science 64 (11):1207–11. doi: 10.5650/jos.ess15180.
  • Li, D., Q. Zhang, L. Huang, Z. Chen, C. Zou, Y. Ma, M.-J. Cao, G.-M. Liu, Y. Liu, and Y. Wang. 2021. Fabricating hydrophilic particles with oleic acid and bovine serum albumin to improve the dispersibility and bioaccessibility of fucoxanthin in water. Food Hydrocolloids. 118:106752. doi: 10.1016/j.foodhyd.2021.106752.
  • Li, D., Y. Liu, Y. Ma, Y. Liu, S. Wang, Z. Guo, J. Li, Y. Wang, B. Tan, and Y. Wei. 2022. Fabricating hydrophilic fatty acid-protein particles to encapsulate fucoxanthin: Fatty acid screening, structural characterization, and thermal stability analysis. Food Chemistry 382:132311. doi: 10.1016/j.foodchem.2022.132311.
  • Li, H., Y. Xu, X. Sun, S. Wang, J. Wang, J. Zhu, D. Wang, and L. Zhao. 2018. Stability, bioactivity, and bioaccessibility of fucoxanthin in zein-caseinate composite nanoparticles fabricated at neutral pH by antisolvent precipitation. Food Hydrocolloids. 84:379–88. doi: 10.1016/j.foodhyd.2018.06.032.
  • Li, J., Y. Li, X. Zhang, S. Miao, M. Tan, and W. Su. 2022. Microfluidic spinning of fucoxanthin-loaded nanofibers for enhancing antioxidation and clarification of fruit juice. Food & Function 13 (3):1472–81. doi: 10.1039/d1fo03766h.
  • Li, S., H. Zhang, K. Chen, M. Jin, S. H. Vu, S. Jung, N. He, Z. Zheng, and M. S. Lee. 2022. Application of chitosan/alginate nanoparticle in oral drug delivery systems: Prospects and challenges. Drug Delivery 29 (1):1142–9. doi: 10.1080/10717544.2022.2058646.
  • Li, Y., X. Dou, J. Pang, M. Liang, C. Feng, M. Kong, Y. Liu, X. Cheng, Y. Wang, and X. Chen. 2019. Improvement of fucoxanthin oral efficacy via vehicles based on gum Arabic, gelatin and alginate hydrogel: Delivery system for oral efficacy enhancement of functional food ingredients. Journal of Functional Foods 63:103573. doi: 10.1016/j.jff.2019.103573.
  • Liang, D., W. Su, X. Zhao, J. Li, Z. Hua, S. Miao, and M. Tan. 2022. Microfluidic fabrication of pH-responsive nanoparticles for encapsulation and colon-target release of fucoxanthin. Journal of Agricultural and Food Chemistry 70 (1):124–35. doi: 10.1021/acs.jafc.1c05580.
  • Lourenço-Lopes, C., M. Fraga-Corral, C. Jimenez-Lopez, M. Carpena, A. G. Pereira, P. Garcia-Oliveira, M. A. Prieto, and J. Simal-Gandara. 2021. Biological action mechanisms of fucoxanthin extracted from algae for application in food and cosmetic industries. Trends in Food Science & Technology 117:163–81. doi: 10.1016/j.tifs.2021.03.012.
  • Lourenço-Lopes, C., P. Garcia-Oliveira, M. Carpena, M. Fraga-Corral, C. Jimenez-Lopez, A. G. Pereira, M. A. Prieto, and J. Simal-Gandara. 2020. Scientific approaches on extraction, purification and stability for the commercialization of fucoxanthin recovered from brown algae. Foods 9 (8):1113. doi: 10.3390/foods9081113.
  • Ma, Z., N. Khalid, G. Shu, Y. Zhao, I. Kobayashi, M. A. Neves, A. Tuwo, and M. Nakajima. 2019. Fucoxanthin-loaded oil-in-water emulsion-based delivery systems: Effects of natural emulsifiers on the formulation, stability, and bioaccessibility. ACS Omega 4 (6):10502–9. doi: 10.1021/acsomega.9b00871.
  • Ma, Z., Y. Zhao, N. Khalid, G. Shu, M. A. Neves, I. Kobayashi, and M. Nakajima. 2020. Comparative study of oil-in-water emulsions encapsulating fucoxanthin formulated by microchannel emulsification and high-pressure homogenization. Food Hydrocolloids. 108:105977. doi: 10.1016/j.foodhyd.2020.105977.
  • Malgarim Cordenonsi, L., A. Faccendini, M. Catanzaro, M. C. Bonferoni, S. Rossi, L. Malavasi, R. Platcheck Raffin, E. E. Scherman Schapoval, C. Lanni, G. Sandri, et al. 2019. The role of chitosan as coating material for nanostructured lipid carriers for skin delivery of fucoxanthin. International Journal of Pharmaceutics 567:118487. doi: 10.1016/j.ijpharm.2019.118487.
  • McClements, D. J. 2011. Edible nanoemulsions: Fabrication, properties, and functional performance. Soft Matter 7 (6):2297–316. doi: 10.1039/C0SM00549E.
  • Meena, S., W. Prasad, K. Khamrui, S. Mandal, and S. Bhat. 2021. Preparation of spray-dried curcumin microcapsules using a blend of whey protein with maltodextrin and gum arabica and its in-vitro digestibility evaluation. Food Bioscience 41:100990. doi: 10.1016/j.fbio.2021.100990.
  • Mok, I. K., J. K. Lee, J. H. Kim, C. H. Pan, and S. M. Kim. 2018. Fucoxanthin bioavailability from fucoxanthin-fortified milk: In vivo and in vitro study. Food Chemistry 258:79–86. doi: 10.1016/j.foodchem.2018.03.047.
  • Montero, P., M. M. Calvo, M. C. Gómez-Guillén, and J. Gómez-Estaca. 2016. Microcapsules containing astaxanthin from shrimp waste as potential food coloring and functional ingredient: Characterization, stability, and bioaccessibility. LWT 70:229–36. doi: 10.1016/j.lwt.2016.02.040.
  • Nagao, A. 2014. Bioavailability of dietary carotenoids: Intestinal absorption and metabolism. Japan Agricultural Research Quarterly: JARQ 48 (4):385–91. doi: 10.6090/jarq.48.385.
  • Nakazawa, Y., T. Sashima, M. Hosokawa, and K. Miyashita. 2009. Comparative evaluation of growth inhibitory effect of stereoisomers of fucoxanthin in human cancer cell lines. Journal of Functional Foods 1 (1):88–97. doi: 10.1016/j.jff.2008.09.015.
  • Ndayishimiye, J., and B. S. Chun. 2018. Formation, characterization and release behavior of citrus oil-polymer microparticles using particles from gas saturated solutions (PGSS) process. Journal of Industrial and Engineering Chemistry 63:201–7. doi: 10.1016/j.jiec.2018.02.016.
  • Nie, J., D. Chen, J. Ye, Y. Lu, and Z. Dai. 2021. Optimization and kinetic modeling of ultrasonic-assisted extraction of fucoxanthin from edible brown algae Sargassum fusiforme using green solvents. Ultrasonics Sonochemistry 77:105671. doi: 10.1016/j.ultsonch.2021.105671.
  • Niizawa, I., B. Y. Espinaco, S. E. Zorrilla, and G. A. Sihufe. 2019. Natural astaxanthin encapsulation: Use of response surface methodology for the design of alginate beads. International Journal of Biological Macromolecules 121:601–8. doi: 10.1016/j.ijbiomac.2018.10.044.
  • Nobari Azar, F. A., A. Pezeshki, B. Ghanbarzadeh, H. Hamishehkar, and M. Mohammadi. 2020. Nanostructured lipid carriers: Promising delivery systems for encapsulation of food ingredients. Journal of Agriculture and Food Research 2:100084. doi: 10.1016/j.jafr.2020.100084.
  • Noviendri, D., I. Jaswir, M. Taher, F. Mohamed, H. M. Salleh, I. A. Noorbatcha, F. Octavianti, W. Lestari, R. Hendri, H. Ahmad, et al. 2016. Fabrication of fucoxanthin-loaded microsphere (F-LM) by two steps double-emulsion solvent evaporation method and characterization of fucoxanthin before and after microencapsulation. Journal of Oleo Science 65 (8):641–53. doi: 10.5650/jos.ess16018.
  • Oliyaei, N., M. Moosavi-Nasab, A. M. Tamaddon, and M. Fazaeli. 2020a. Double encapsulation of fucoxanthin using porous starch through sequential coating modification with maltodextrin and gum Arabic. Food Science & Nutrition 8 (2):1226–36. doi: 10.1002/fsn3.1411.
  • Oliyaei, N., M. Moosavi-Nasab, A. M. Tamaddon, and M. Fazaeli. 2020b. Encapsulation of fucoxanthin in binary matrices of porous starch and halloysite. Food Hydrocolloids. 100:105458. doi: 10.1016/j.foodhyd.2019.105458.
  • Oliyaei, N., M. Moosavi-Nasab, and N. Tanideh. 2022. Preparation of fucoxanthin nanoemulsion stabilized by natural emulsifiers: Fucoidan, sodium caseinate, and gum arabic. Molecules 27 (19):6713. doi: 10.3390/molecules27196713.
  • Paulo, F., and L. Santos. 2018. Double emulsion solvent evaporation approach as a novel eugenol delivery system – Optimization by response surface methodology. Industrial Crops and Products 126:287–301. doi: 10.1016/j.indcrop.2018.10.027.
  • Peng, J., J. P. Yuan, C. F. Wu, and J. H. Wang. 2011. Fucoxanthin, a marine carotenoid present in brown seaweeds and diatoms: Metabolism and bioactivities relevant to human health. Marine Drugs 9 (10):1806–28. doi: 10.3390/md9101806.
  • Petrushkina, M., E. Gusev, B. Sorokin, N. Zotko, A. Mamaeva, A. Filimonova, M. Kulikovskiy, Y. Maltsev, I. Yampolsky, E. Guglya, et al. 2017. Fucoxanthin production by heterokont microalgae. Algal Research 24:387–93. doi: 10.1016/j.algal.2017.03.016.
  • Quan, J., S. M. Kim, C. H. Pan, and D. Chung. 2013. Characterization of fucoxanthin-loaded microspheres composed of cetyl palmitate-based solid lipid core and fish gelatin-gum arabic coacervate shell. Food Research International 50 (1):31–7. doi: 10.1016/j.foodres.2012.09.040.
  • Ravi, H., and V. Baskaran. 2017. Chitosan-glycolipid nanocarriers improve the bioavailability of fucoxanthin via up-regulation of PPARγ and SRB1 and antioxidant activity in rat model. Journal of Functional Foods 28:215–26. doi: 10.1016/j.jff.2016.10.023.
  • Ravi, H., N. Kurrey, Y. Manabe, T. Sugawara, and V. Baskaran. 2018. Polymeric chitosan-glycolipid nanocarriers for an effective delivery of marine carotenoid fucoxanthin for induction of apoptosis in human colon cancer cells (Caco-2 cells). Materials Science & Engineering. C, Materials for Biological Applications 91:785–95. doi: 10.1016/j.msec.2018.06.018.
  • Ravi, H., R. Arunkumar, and V. Baskaran. 2015. Chitosan-glycolipid nanogels loaded with anti-obese marine carotenoid fucoxanthin: Acute and sub-acute toxicity evaluation in rodent model. Journal of Biomaterials Applications 30 (4):420–34. doi: 10.1177/0885328215590753.
  • Ribeiro, M. L. F. F., Y. H. Roos, A. P. B. Ribeiro, and V. R. Nicoletti. 2020. Effects of maltodextrin content in double-layer emulsion for production and storage of spray-dried carotenoid-rich microcapsules. Food and Bioproducts Processing 124:208–21. doi: 10.1016/j.fbp.2020.09.004.
  • Sachindra, N. M., E. Sato, H. Maeda, M. Hosokawa, Y. Niwano, M. Kohno, and K. Miyashita. 2007. Radical scavenging and singlet oxygen quenching activity of marine carotenoid fucoxanthin and its metabolites. Journal of Agricultural and Food Chemistry 55 (21):8516–22. doi: 10.1021/jf071848a.
  • Salvia-Trujillo, L., Q. Sun, B. H. Um, Y. Park, and D. J. McClements. 2015. In vitro and in vivo study of fucoxanthin bioavailability from nanoemulsion-based delivery systems: Impact of lipid carrier type. Journal of Functional Foods 17:293–304. doi: 10.1016/j.jff.2015.05.035.
  • Sánchez, C. A. O., E. B. Zavaleta, G. R. U. García, G. L. Solano, and M. P. R. Díaz. 2021. Krill oil microencapsulation: Antioxidant activity, astaxanthin retention, encapsulation efficiency, fatty acids profile, in vitro bioaccessibility and storage stability. LWT 147:111476. doi: 10.1016/j.lwt.2021.111476.
  • Saravana, P. S., K. Shanmugapriya, C. R. N. Gereniu, S. J. Chae, H. W. Kang, H. C. Woo, and B. S. Chun. 2019. Ultrasound-mediated fucoxanthin rich oil nanoemulsions stabilized by κ-carrageenan: Process optimization, bio-accessibility and cytotoxicity. Ultrasonics Sonochemistry 55:105–16. doi: 10.1016/j.ultsonch.2019.03.014.
  • Sellimi, S., G. Ksouda, A. Benslima, R. Nasri, M. Rinaudo, M. Nasri, and M. Hajji. 2017. Enhancing colour and oxidative stabilities of reduced-nitrite turkey meat sausages during refrigerated storage using fucoxanthin purified from the Tunisian seaweed Cystoseira barbata. Food and Chemical Toxicology: An International Journal Published for the British Industrial Biological Research Association 107 (Pt B):620–9. doi: 10.1016/j.fct.2017.04.001.
  • Serdaroğlu, M., B. Öztürk, and A. Kara. 2015. An overview of food emulsions: Description, classification and recent potential applications. Turkish Journal of Agriculture - Food Science and Technology 3 (6):430–8. doi: 10.24925/turjaf.v3i6.430-438.336.
  • Sharma, P. P., and V. Baskaran. 2021. Polysaccharide (laminaran and fucoidan), fucoxanthin and lipids as functional components from brown algae (Padina tetrastromatica) modulates adipogenesis and thermogenesis in diet-induced obesity in C57BL6 mice. Algal Research 54:102187. doi: 10.1016/j.algal.2021.102187.
  • Shiratori, K., K. Ohgami, I. Ilieva, X. H. Jin, Y. Koyama, K. Miyashita, K. Yoshida, S. Kase, and S. Ohno. 2005. Effects of fucoxanthin on lipopolysaccharide-induced inflammation in vitro and in vivo. Experimental Eye Research 81 (4):422–8. doi: 10.1016/j.exer.2005.03.002.
  • Sugawara, T., V. Baskaran, W. Tsuzuki, and A. Nagao. 2002. Brown algae fucoxanthin is hydrolyzed to fucoxanthinol during absorption by Caco-2 human intestinal cells and mice. The Journal of Nutrition 132 (5):946–51. doi: 10.1093/jn/132.5.946.
  • Sun, J., C. Zhou, P. Cheng, J. Zhu, Y. Hou, Y. Li, J. Zhang, and X. Yan. 2022. A simple and efficient strategy for fucoxanthin extraction from the microalga Phaeodactylum tricornutum. Algal Research 61:102610. doi: 10.1016/j.algal.2021.102610.
  • Sun, X., Y. Xu, L. Zhao, H. Yan, S. Wang, and D. Wang. 2018. The stability and bioaccessibility of fucoxanthin in spray-dried microcapsules based on various biopolymers. RSC Advances 8 (61):35139–49. doi: 10.1039/c8ra05621h.
  • Suner, S. S., B. Ari, S. D. Sutekin, and N. Sahiner. 2022. Biocompatible poly(galacturonic acid) micro/nanogels with controllable degradation via tunable chemical crosslinking. International Journal of Biological Macromolecules 201:351–63. doi: 10.1016/j.ijbiomac.2021.12.107.
  • van der Kooij, R. S., R. Steendam, H. W. Frijlink, and W. L. J. Hinrichs. 2022. An overview of the production methods for core–shell ­microspheres for parenteral controlled drug delivery. European Journal of Pharmaceutics and Biopharmaceutics: Official Journal of Arbeitsgemeinschaft Fur Pharmazeutische Verfahrenstechnik e.V 170:24–42. doi: 10.1016/j.ejpb.2021.11.007.
  • Vo, D. T., P. S. Saravana, H. C. Woo, and B. S. Chun. 2018. Fucoxanthin-rich oil encapsulation using biodegradable polyethylene glycol and particles from gas-saturated solutions technique. Journal of CO2 Utilization 26:359–69. doi: 10.1016/j.jcou.2018.05.019.
  • Wang, C., J. Ren, H. Song, X. Chen, and H. Qi. 2021. Characterization of whey protein-based nanocomplex to load fucoxanthin and the mechanism of action on glial cells PC12. LWT 151:112208. doi: 10.1016/j.lwt.2021.112208.
  • Wang, L., Z. Wei, C. Xue, Q. Tang, T. Zhang, Y. Chang, and Y. Wang. 2022. Fucoxanthin-loaded nanoparticles composed of gliadin and chondroitin sulfate: Synthesis, characterization and stability. Food Chemistry 379:132163. doi: 10.1016/j.foodchem.2022.132163.
  • Wang, R., E. M. Younis, V. P. Veeraraghavan, and C. Tian. 2020. Antiurolithiatic effect of Fucoxanthin on ethylene glycol-induced renal calculus in experimental rats. Journal of King Saud University - Science 32 (3):1896–901. doi: 10.1016/j.jksus.2020.01.027.
  • Wang, X., Y. J. Cui, J. Qi, M. M. Zhu, T. L. Zhang, M. Cheng, S. M. LiU, and G. C. Wang. 2018. Fucoxanthin exerts cytoprotective effects against hydrogen peroxide-induced oxidative damage in L02 cells. BioMed Research International 2018:1085073–25. doi: 10.1155/2018/1085073.
  • Wei, Z., and Q. Huang. 2019. Assembly of protein-polysaccharide complexes for delivery of bioactive ingredients: A perspective paper. Journal of Agricultural and Food Chemistry 67 (5):1344–52. doi: 10.1021/acs.jafc.8b06063.
  • Wu, C., J. Sun, H. Jiang, Y. Li, and J. Pang. 2021. Construction of carboxymethyl konjac glucomannan/chitosan complex nanogels as potential delivery vehicles for curcumin. Food Chemistry 362:130242. doi: 10.1016/j.foodchem.2021.130242.
  • Yang, G., Q. Li, J. Peng, L. Jin, X. Zhu, D. Zheng, Y. Zhang, R. Wang, Y. Song, W. Hu, et al. 2021. Fucoxanthin regulates Nrf2 signaling to decrease oxidative stress and improves renal fibrosis depending on Sirt1 in HG-induced GMCs and STZ-induced diabetic rats. European Journal of Pharmacology 913:174629. doi: 10.1016/j.ejphar.2021.174629.
  • Yuan, Y., H. Li, C. Liu, J. Zhu, Y. Xu, S. Zhang, M. Fan, D. Zhang, Y. Zhang, Z. Zhang, et al. 2019. Fabrication of stable zein nanoparticles by chondroitin sulfate deposition based on antisolvent precipitation method. International Journal of Biological Macromolecules 139:30–9. doi: 10.1016/j.ijbiomac.2019.07.090.
  • Zhang, Z., R. Zhang, and D. J. McClements. 2016. Encapsulation of β-carotene in alginate-based hydrogel beads: Impact on physicochemical stability and bioaccessibility. Food Hydrocolloids. 61:1–10. doi: 10.1016/j.foodhyd.2016.04.036.
  • Zhao, D., D. Yu, M. Kim, M. Y. Gu, S. M. Kim, C. H. Pan, G. H. Kim, and D. Chung. 2019. Effects of temperature, light, and pH on the stability of fucoxanthin in an oil-in-water emulsion. Food Chemistry 291:87–93. doi: 10.1016/j.foodchem.2019.04.002.
  • Zhao, X., L. Gao, and X. Zhao. 2022. Rapid purification of fucoxanthin from Phaeodactylum tricornutum. Molecules 27 (10):3189. doi: 10.3390/molecules27103189.
  • Zhao, Y., J. Zhi, S. Huang, X. Zhang, Y.-R. Kim, Y. Xu, D. Wang, and K. Luo. 2022. Fabrication of starch/zein-based microcapsules for encapsulation and delivery of fucoxanthin. Food Chemistry 392:133282. doi: 10.1016/j.foodchem.2022.133282.
  • Zheng, X., C. Qiu, J. Long, A. Jiao, X. Xu, Z. Jin, and J. Wang. 2021. Preparation and characterization of porous starch/β-cyclodextrin microsphere for loading curcumin: Equilibrium, kinetics and mechanism of adsorption. Food Bioscience 41:101081. doi: 10.1016/j.fbio.2021.101081.
  • Zhu, J., X. Sun, S. Wang, Y. Xu, and D. Wang. 2017. Formation of nanocomplexes comprising whey proteins and fucoxanthin: Characterization, spectroscopic analysis, and molecular docking. Food Hydrocolloids. 63:391–403. doi: 10.1016/j.foodhyd.2016.09.027.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.