312
Views
2
CrossRef citations to date
0
Altmetric
Reviews

5’AMP-activated protein kinase: an emerging target of phytochemicals to treat chronic inflammatory diseases

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon

References

  • Ahmad, N., M. Y. Ansari, and T. M. Haqqi. 2020. Role of iNOS in osteoarthritis: Pathological and therapeutic aspects. Journal of Cellular Physiology 235 (10):6366–76. doi: 10.1002/jcp.29607.
  • Ahmed, S. M. U., L. Luo, A. Namani, X. J. Wang, and X. Tang. 2017. Nrf2 signaling pathway: Pivotal roles in inflammation. Biochimica et Biophysica Acta. Molecular Basis of Disease 1863 (2):585–97. doi: 10.1016/j.bbadis.2016.11.005.
  • Alamgeer, U. H., A. M. Uttra, S. Qasim, J. Ikram, M. Saleem, and Z. R. Niazi. 2020. Phytochemicals targeting matrix metalloproteinases regulating tissue degradation in inflammation and rheumatoid arthritis. Phytomedicine: International Journal of Phytotherapy and Phytopharmacology 66:153134. doi: 10.1016/j.phymed.2019.153134.
  • Alghamdi, F., Y. Alshuweishi, and I. P. Salt. 2020. Regulation of nutrient uptake by AMP-activated protein kinase. Cellular Signalling 76:109807. doi: 10.1016/j.cellsig.2020.109807.
  • Antonioli, L., R. Colucci, C. Pellegrini, G. Giustarini, D. Sacco, E. Tirotta, V. Caputi, I. Marsilio, M. C. Giron, Z. H. Németh, et al. 2016. The AMPK enzyme-complex: From the regulation of cellular energy homeostasis to a possible new molecular target in the management of chronic inflammatory disorders. Expert Opinion on Therapeutic Targets 20 (2):179–91. doi: 10.1517/14728222.2016.1086752.
  • Balaji, M., M. S. Ganjayi, G. E. N. Hanuma Kumar, B. N. Parim, R. Mopuri, and S. Dasari. 2016. A review on possible therapeutic targets to contain obesity: The role of phytochemicals. Obesity Research & Clinical Practice 10 (4):363–80. doi: 10.1016/j.orcp.2015.12.004.
  • Behl, T., K. Kumar, C. Brisc, M. Rus, D. C. Nistor-Cseppento, C. Bustea, R. A. C. Aron, C. Pantis, G. Zengin, A. Sehgal, et al. 2021. Exploring the multifocal role of phytochemicals as immunomodulators. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie 133:110959. doi: 10.1016/j.biopha.2020.110959.
  • Bloom, G. S. 2014. Amyloid-β and tau: The trigger and bullet in Alzheimer disease pathogenesis. JAMA Neurology 71 (4):505–8. doi: 10.1001/jamaneurol.2013.5847.
  • Busch, C. J, and C. J. Binder. 2017. Malondialdehyde epitopes as mediators of sterile inflammation. Biochimica et Biophysica Acta. Molecular and Cell Biology of Lipids 1862 (4):398–406. doi: 10.1016/j.bbalip.2016.06.016.
  • Cai, J., X. Chen, X. Liu, Z. Li, A. Shi, X. Tang, P. Xia, J. Zhang, and P. Yu. 2022. AMPK: The key to ischemia-reperfusion injury. Journal of Cellular Physiology. 1–18. doi: 10.1002/jcp.30875.
  • Canbolat, E, and F. P. Cakıroglu. 2022. The importance of AMPK in obesity and chronic diseases and the relationship of AMPK with nutrition: A literature review. Critical Reviews in Food Science and Nutrition:1–8. doi: 10.1080/10408398.2022.2087595.
  • Chang, K.-W, and C.-Y. Kuo. 2015. 6-Gingerol modulates proinflammatory responses in dextran sodium sulfate (DSS)-treated Caco-2 cells and experimental colitis in mice through adenosine monophosphate-activated protein kinase (AMPK) activation. Food & Function 6 (10):3334–41. doi: 10.1039/C5FO00513B.
  • Chen, W.-W., X. Zhang, and W.-J. Huang. 2016. Role of neuroinflammation in neurodegenerative diseases (Review). Molecular Medicine Reports 13 (4):3391–6. doi: 10.3892/mmr.2016.4948.
  • Cheng, P.-Y., Y.-M. Lee, K.-K. Law, C.-W. Lin, and M.-H. Yen. 2007. The involvement of AMP-activated protein kinases in the anti-inflammatory effect of nicotine in vivo and in vitro. Biochemical Pharmacology 74 (12):1758–65. doi: 10.1016/j.bcp.2007.08.004.
  • Ci, X., J. Zhou, H. Lv, Q. Yu, L. Peng, and S. Hua. 2017. Betulin exhibits anti-inflammatory activity in LPS-stimulated macrophages and endotoxin-shocked mice through an AMPK/AKT/Nrf2-dependent mechanism. Cell Death & Disease 8 (5):e2798. doi: 10.1038/cddis.2017.39.
  • Coskun, M., J. Olsen, J. B. Seidelin, and O. H. Nielsen. 2011. MAP kinases in inflammatory bowel disease. Clinica Chimica Acta; International Journal of Clinical Chemistry 412 (7-8):513–20. doi: 10.1016/j.cca.2010.12.020.
  • Cushnie, T. P. T., B. Cushnie, and A. J. Lamb. 2014. Alkaloids: An overview of their antibacterial, antibiotic-enhancing and antivirulence activities. International Journal of Antimicrobial Agents 44 (5):377–86. doi: 10.1016/j.ijantimicag.2014.06.001.
  • Davidovich, P., C. J. Kearney, and S. J. Martin. 2014. Inflammatory outcomes of apoptosis, necrosis and necroptosis. Biological Chemistry 395 (10):1163–71. doi: 10.1515/hsz-2014-0164.
  • Del Carlo, M, and R. F. Loeser. 2008. Cell death in osteoarthritis. Current Rheumatology Reports 10 (1):37–42. doi: 10.1007/s11926-008-0007-8.
  • DeLegge, M. H, and A. Smoke. 2008. Neurodegeneration and inflammation. Nutrition in Clinical Practice : official Publication of the American Society for Parenteral and Enteral Nutrition 23 (1):35–41. doi: 10.1177/011542650802300135.
  • Diller, M. L., R. R. Kudchadkar, K. A. Delman, D. H. Lawson, and M. L. Ford. 2016. Balancing inflammation: The link between Th17 and regulatory T cells. Mediators of Inflammation 2016:e6309219. doi: 10.1155/2016/6309219.
  • Dite, T. A., C. G. Langendorf, A. Hoque, S. Galic, R. J. Rebello, A. J. Ovens, L. M. Lindqvist, K. R. W. Ngoei, N. X. Y. Ling, L. Furic, et al. 2018. AMP-activated protein kinase selectively inhibited by the type II inhibitor SBI-0206965. The Journal of Biological Chemistry 293 (23):8874–85. doi: 10.1074/jbc.RA118.003547.
  • Dong, J., W. Liang, T. Wang, J. Sui, J. Wang, Z. Deng, and D. Chen. 2019. Saponins regulate intestinal inflammation in colon cancer and IBD. Pharmacological Research 144:66–72. doi: 10.1016/j.phrs.2019.04.010.
  • D’Onofrio, G., D. Sancarlo, Q. Ruan, Z. Yu, F. Panza, A. Daniele, A. Greco, and D. Seripa. 2017. Phytochemicals in the treatment of Alzheimer’s disease: A systematic review. Current Drug Targets 18 (13):1487–98. doi: 10.2174/1389450117666161102121553.
  • Du, S., Y. Deng, H. Yuan, and Y. Sun. 2019. Safflower yellow B protects brain against cerebral ischemia reperfusion injury through AMPK/NF-kB pathway. Evid-based. Evidence-Based Complementary and Alternative Medicine: eCAM 2019:7219740. doi: 10.1155/2019/7219740.
  • Entezari, M., D. Hashemi, A. Taheriazam, A. Zabolian, S. Mohammadi, F. Fakhri, M. Hashemi, K. Hushmandi, M. Ashrafizadeh, A. Zarrabi, et al. 2022. AMPK signaling in diabetes mellitus, insulin resistance and diabetic complications: A pre-clinical and clinical investigation. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie 146:112563. doi: 10.1016/j.biopha.2021.112563.
  • Forni, C., F. Facchiano, M. Bartoli, S. Pieretti, A. Facchiano, D. D’Arcangelo, S. Norelli, G. Valle, R. Nisini, S. Beninati, et al. 2019. Beneficial role of phytochemicals on oxidative stress and age-related diseases. BioMed Research International 2019:e8748253. doi: 10.1155/2019/8748253.
  • Gao, F., J. Chen, and H. Zhu. 2018. A potential strategy for treating atherosclerosis: Improving endothelial function via AMP-activated protein kinase. Science China. Life Sciences 61 (9):1024–9. doi: 10.1007/s11427-017-9285-1.
  • Gao, Q., P. Bi, D. Luo, Y. Guan, W. Zeng, H. Xiang, Q. Mi, G. Yang, X. Li, and B. Yang. 2020. Nicotine-induced autophagy via AMPK/mTOR pathway exerts protective effect in colitis mouse model. Chemico-Biological Interactions 317:108943. doi: 10.1016/j.cbi.2020.108943.
  • Ge, Y., M. Zhou, C. Chen, X. Wu, and X. Wang. 2022. Role of AMPK mediated pathways in autophagy and aging. Biochimie 195:100–13. doi: 10.1016/j.biochi.2021.11.008.
  • Geden, M. J., S. E. Romero, and M. Deshmukh. 2019. Apoptosis versus axon pruning: Molecular intersection of two distinct pathways for axon degeneration. Neuroscience Research 139:3–8. doi: 10.1016/j.neures.2018.11.007.
  • Gejjalagere Honnappa, C, and U. Mazhuvancherry Kesavan. 2016. A concise review on advances in development of small molecule anti-inflammatory therapeutics emphasising AMPK: An emerging target. International Journal of Immunopathology and Pharmacology 29 (4):562–71. doi: 10.1177/0394632016673369.
  • Ghavami, S., S. Shojaei, B. Yeganeh, S. R. Ande, J. R. Jangamreddy, M. Mehrpour, J. Christoffersson, W. Chaabane, A. R. Moghadam, H. H. Kashani, et al. 2014. Autophagy and apoptosis dysfunction in neurodegenerative disorders. Progress in Neurobiology 112:24–49. doi: 10.1016/j.pneurobio.2013.10.004.
  • Gu, X., Z. Cai, M. Cai, K. Liu, D. Liu, Q. Zhang, J. Tan, and Q. Ma. 2018. AMPK/SIRT1/p38 MAPK signaling pathway regulates alcohol‑induced neurodegeneration by resveratrol. Molecular Medicine Reports 17 (4):5402–8. doi: 10.3892/mmr.2018.8482.
  • Guo, F., X. Liu, H. Cai, and W. Le. 2018. Autophagy in neurodegenerative diseases: Pathogenesis and therapy. Brain Pathology (Zurich, Switzerland) 28 (1):3–13. doi: 10.1111/bpa.12545.
  • Guo, T., S.-L. Woo, X. Guo, H. Li, J. Zheng, R. Botchlett, M. Liu, Y. Pei, H. Xu, Y. Cai, et al. 2016. Berberine ameliorates hepatic steatosis and suppresses liver and adipose tissue inflammation in mice with diet-induced obesity. Scientific Reports 6:22612. [accessed 2020 Apr 26] doi: 10.1038/srep22612.
  • Handa, N., T. Takagi, S. Saijo, S. Kishishita, D. Takaya, M. Toyama, T. Terada, M. Shirouzu, A. Suzuki, S. Lee, et al. 2011. Structural basis for compound C inhibition of the human AMP-activated protein kinase α2 subunit kinase domain. Acta Crystallographica. Section D, Biological Crystallography 67 (Pt 5):480–7. doi: 10.1107/S0907444911010201.
  • Hao, J., M. A. Daleo, C. K. Murphy, P. B. Yu, J. N. Ho, J. Hu, R. T. Peterson, A. K. Hatzopoulos, and C. C. Hong. 2008. Dorsomorphin, a selective small molecule inhibitor of BMP signaling, promotes cardiomyogenesis in embryonic stem cells. PloS One 3 (8):e2904. doi: 10.1371/journal.pone.0002904.
  • He, C., H. Zhu, H. Li, M.-H. Zou, and Z. Xie. 2013. Dissociation of Bcl-2–Beclin1 complex by activated AMPK enhances cardiac autophagy and protects against cardiomyocyte apoptosis in diabetes. Diabetes 62 (4):1270–81. doi: 10.2337/db12-0533.
  • He, Y.-Q., C.-C. Zhou, L.-Y. Yu, L. Wang, J. Deng, Y.-L. Tao, F. Zhang, and W.-S. Chen. 2021. Natural product derived phytochemicals in managing acute lung injury by multiple mechanisms. Pharmacological Research 163:105224. doi: 10.1016/j.phrs.2020.105224.
  • Herzig, S, and R. J. Shaw. 2018. AMPK: Guardian of metabolism and mitochondrial homeostasis. Nature Reviews. Molecular Cell Biology 19 (2):121–35. doi: 10.1038/nrm.2017.95.
  • Hossen, I., W. Hua, L. Ting, A. Mehmood, S. Jingyi, X. Duoxia, C. Yanping, W. Hongqing, G. Zhipeng, Z. Kaiqi, et al. 2020. Phytochemicals and inflammatory bowel disease: A review. Critical Reviews in Food Science and Nutrition 60 (8):1321–45. doi: 10.1080/10408398.2019.1570913.
  • Hsu, C.-C., D. Peng, Z. Cai, and H.-K. Lin. 2022. AMPK signaling and its targeting in cancer progression and treatment. Seminars in Cancer Biology 85:52–68. doi: 10.1016/j.semcancer.2021.04.006.
  • Jeong, H. W., K. C. Hsu, J.-W. Lee, M. Ham, J. Y. Huh, H. J. Shin, W. S. Kim, and J. B. Kim. 2009. Berberine suppresses proinflammatory responses through AMPK activation in macrophages. American Journal of Physiology. Endocrinology and Metabolism 296 (4):E955–E964. doi: 10.1152/ajpendo.90599.2008.
  • Ji, G., Y. Zhang, Q. Yang, S. Cheng, J. Hao, X. Zhao, and Z. Jiang. 2012. Genistein suppresses LPS-induced inflammatory response through inhibiting NF-κB following AMP kinase activation in RAW 264.7 macrophages. PLoS One [Internet] 7 (12):e53101. doi: 10.1371/journal.pone.0053101.
  • Jiménez-Flores, L. M., S. López-Briones, M. H. Macías-Cervantes, J. Ramírez-Emiliano, and V. Pérez-Vázquez. 2014. A PPARγ, NF-κB and AMPK-dependent mechanism may be involved in the beneficial effects of curcumin in the diabetic db/db mice liver. Molecules (Basel, Switzerland) 19 (6):8289–302. doi: 10.3390/molecules19068289.
  • Joo, M. S., W. D. Kim, K. Y. Lee, J. H. Kim, J. H. Koo, and S. G. Kim. 2016. AMPK facilitates nuclear accumulation of Nrf2 by phosphorylating at serine 550. Molecular and Cellular Biology 36 (14):1931–42. doi: 10.1128/MCB.00118-16.
  • Joshi, T., A. K. Singh, P. Haratipour, A. N. Sah, A. K. Pandey, R. Naseri, V. Juyal, and M. H. Farzaei. 2019. Targeting AMPK signaling pathway by natural products for treatment of diabetes mellitus and its complications. Journal of Cellular Physiology 234 (10):17212–31. doi: 10.1002/jcp.28528.
  • Kattoor, A. J., N. V. K. Pothineni, D. Palagiri, and J. L. Mehta. 2017. Oxidative stress in atherosclerosis. Current Atherosclerosis Reports 19 (11):42. doi: 10.1007/s11883-017-0678-6.
  • Kim, J., S.-W. Jeong, H. Quan, C.-W. Jeong, J.-I. Choi, and H.-B. Bae. 2016. Effect of curcumin (Curcuma longa extract) on LPS-induced acute lung injury is mediated by the activation of AMPK. Journal of Anesthesia 30 (1):100–8. doi: 10.1007/s00540-015-2073-1.
  • Kim, N., P. Lertnimitphun, Y. Jiang, H. Tan, H. Zhou, Y. Lu, and H. Xu. 2019. Andrographolide inhibits inflammatory responses in LPS-stimulated macrophages and murine acute colitis through activating AMPK. Biochemical Pharmacology 170:113646. doi: 10.1016/j.bcp.2019.113646.
  • Kirsch, G., A. B. Abdelwahab, and P. Chaimbault. 2016. Natural and synthetic coumarins with effects on inflammation. Molecules 21 (10):1322. doi: 10.3390/molecules21101322.
  • Ko, H.-K., H.-F. Lee, A.-H. Lin, M.-H. Liu, C.-I. Liu, T.-S. Lee, and Y. R. Kou. 2015. Regulation of cigarette smoke induction of IL-8 in macrophages by AMP-activated protein kinase signaling. Journal of Cellular Physiology 230 (8):1781–93. doi: 10.1002/jcp.24881.
  • Kobayashi, T., B. Siegmund, C. Le Berre, S. C. Wei, M. Ferrante, B. Shen, C. N. Bernstein, S. Danese, L. Peyrin-Biroulet, and T. Hibi. 2020. Ulcerative colitis. Nature Reviews. Disease Primers 6 (1):74. doi: 10.1038/s41572-020-0205-x.
  • Kocaturk, N. M., Y. Akkoc, C. Kig, O. Bayraktar, D. Gozuacik, and O. Kutlu. 2019. Autophagy as a molecular target for cancer treatment. European Journal of Pharmaceutical Sciences: Official Journal of the European Federation for Pharmaceutical Sciences 134:116–37. doi: 10.1016/j.ejps.2019.04.011.
  • Korn, T, and A. Kallies. 2017. T cell responses in the central nervous system. Nature Reviews. Immunology 17 (3):179–94. doi: 10.1038/nri.2016.144.
  • Kotecha, R., A. Takami, and J. L. Espinoza. 2016. Dietary phytochemicals and cancer chemoprevention: A review of the clinical evidence. Oncotarget 7 (32):52517–29. doi: 10.18632/oncotarget.9593.
  • Kumar, N, and N. Goel. 2019. Phenolic acids: Natural versatile molecules with promising therapeutic applications. Biotechnology Reports (Amsterdam, Netherlands) 24:e00370. doi: 10.1016/j.btre.2019.e00370.
  • Lapaquette, P., J. Guzzo, L. Bretillon, and M.-A. Bringer. 2015. Cellular and molecular connections between autophagy and inflammation. Mediators of Inflammation 2015:398483. doi: 10.1155/2015/398483.
  • Lee, B., K. M. Moon, and C. Y. Kim. 2018. Tight junction in the intestinal epithelium: Its association with diseases and regulation by phytochemicals. Journal of Immunology Research 2018:2645465–11. doi: 10.1155/2018/2645465.
  • Lee, J.-W., W. Chun, O.-K. Kwon, H. A. Park, Y. Lim, J.-H. Lee, D.-Y. Kim, J. H. Kim, H.-K. Lee, H. W. Ryu, et al. 2018. 3,4,5-Trihydroxycinnamic acid attenuates lipopolysaccharide (LPS)-induced acute lung injury via downregulating inflammatory molecules and upregulating HO-1/AMPK activation. International Immunopharmacology 64:123–30. doi: 10.1016/j.intimp.2018.08.015.
  • Lee, S.-Y., S. H. Lee, E.-J. Yang, E.-K. Kim, J.-K. Kim, D.-Y. Shin, and M.-L. Cho. 2015. Metformin ameliorates inflammatory bowel disease by suppression of the STAT3 signaling pathway and regulation of the between Th17/Treg balance. Plos ONE 10 (9):e0135858–12. doi: 10.1371/journal.pone.0135858.
  • Lee, W.-H., R.-J. Lin, S.-Y. Lin, Y.-C. Chen, H.-M. Lin, and Y.-C. Liang. 2011. Osthole enhances glucose uptake through activation of AMP-activated protein kinase in skeletal muscle cells. Journal of Agricultural and Food Chemistry 59 (24):12874–81. doi: 10.1021/jf2036559.
  • Li, C., X. Miao, F. Li, B. K. Adhikari, Y. Liu, J. Sun, R. Zhang, L. Cai, Q. Liu, and Y. Wang. 2019. Curcuminoids: Implication for inflammation and oxidative stress in cardiovascular diseases. Phytotherapy Research: PTR 33 (5):1302–17. doi: 10.1002/ptr.6324.
  • Li, C., C. Zhang, H. Zhou, Y. Feng, F. Tang, M. P. M. Hoi, C. He, D. Ma, C. Zhao, and S. M. Y. Lee. 2018. Inhibitory effects of betulinic acid on lps-induced neuroinflammation involve M2 Microglial polarization via CaMKKβ-dependent AMPK activation. Frontiers in Molecular Neuroscience 11:98. [Internet]. [accessed 2020 Jun 3 10.3389/fnmol.2018.00098.
  • Li, C.-X., J.-G. Gao, X.-Y. Wan, Y. Chen, C.-F. Xu, Z.-M. Feng, H. Zeng, Y.-M. Lin, H. Ma, P. Xu, et al. 2019. Allyl isothiocyanate ameliorates lipid accumulation and inflammation in nonalcoholic fatty liver disease via the Sirt1/AMPK and NF-κB signaling pathways. World Journal of Gastroenterology 25 (34):5120–33. doi: 10.3748/wjg.v25.i34.5120.
  • Li, H., Y. Yao, and L. Li. 2017. Coumarins as potential antidiabetic agents. The Journal of Pharmacy and Pharmacology 69 (10):1253–64. doi: 10.1111/jphp.12774.
  • Li, J., J.-Z. Dong, Y.-L. Ren, J.-J. Zhu, J.-N. Cao, J. Zhang, and L.-L. Pan. 2018. Luteolin decreases atherosclerosis in LDL receptor‑deficient mice via a mechanism including decreasing AMPK‑SIRT1 signaling in macrophages. Experimental and Therapeutic Medicine 16 (3):2593–9. doi: 10.3892/etm.2018.6499.
  • Li, W., Z. Zhihui, K. Zhang, Z. Xue, Y. Li, Z. Zimu, L. Zhang, C. Gu, Q. Zhang, J. Hao, et al. 2016. Arctigenin suppress Th17 cells and ameliorates experimental autoimmune encephalomyelitis through AMPK and PPAR-γ/ROR-γt signaling. Molecular Neurobiology 53 (8):5356–66. doi: 10.1007/s12035-015-9462-1.
  • Li, Y., J. Li, S. Li, L. Yi, X. Wang, B. Liu, Q. Fu, and S. Ma. 2015. Curcumin attenuates glutamate neurotoxicity in the hippocampus by suppression of ER stress-associated TXNIP/NLRP3 inflammasome activation in a manner dependent on AMPK. Toxicology and Applied Pharmacology 286 (1):53–63. doi: 10.1016/j.taap.2015.03.010.
  • Li, Z, and X. Han. 2018. Resveratrol alleviates early brain injury following subarachnoid hemorrhage: Possible involvement of AMPK/SIRT1/autophagy signaling pathway. Biological Chemistry 399(11):1339–1350.
  • Libby, P., J. E. Buring, L. Badimon, G. K. Hansson, J. Deanfield, M. S. Bittencourt, L. Tokgözoğlu, and E. F. Lewis. 2019. Atherosclerosis. Nature Reviews Disease Primers 5 (1):1–18. doi: 10.1038/s41572-019-0106-z.
  • Lin, H.-Y., B.-R. Huang, W.-L. Yeh, C.-H. Lee, S.-S. Huang, C.-H. Lai, H. Lin, and D.-Y. Lu. 2014. Antineuroinflammatory effects of lycopene via activation of adenosine monophosphate-activated protein kinase-α1/heme oxygenase-1 pathways. Neurobiology of Aging 35 (1):191–202. doi: 10.1016/j.neurobiolaging.2013.06.020.
  • Lin, S., H. Wu, C. Wang, Z. Xiao, and F. Xu. 2018. Regulatory T cells and acute lung injury: Cytokines, uncontrolled inflammation, and therapeutic implications. Frontiers in Immunology 9:1545–10. 10.3389/fimmu.2018.01545.
  • Liu, T., L. Zhang, D. Joo, and S.-C. Sun. 2017. NF-κB signaling in inflammation. Signal Transduct Target Ther 2:17023. doi: 10.1038/sigtrans.2017.23.
  • Liu, Z., H. Zhang, H. Wang, L. Wei, and L. Niu. 2020. Magnolol alleviates IL-1β-induced dysfunction of chondrocytes through repression of SIRT1/AMPK/PGC-1α signaling pathway. Journal of Interferon & Cytokine Research: The Official Journal of the International Society for Interferon and Cytokine Research 40 (3):145–51. doi: 10.1089/jir.2019.0139.
  • Lu, Y.-C., W.-C. Yeh, and P. S. Ohashi. 2008. LPS/TLR4 signal transduction pathway. Cytokine 42 (2):145–51. doi: 10.1016/j.cyto.2008.01.006.
  • Lv, H., Q. Liu, Z. Wen, H. Feng, X. Deng, and X. Ci. 2017. Xanthohumol ameliorates lipopolysaccharide (LPS)-induced acute lung injury via induction of AMPK/GSK3β-Nrf2 signal axis. Redox Biology 12:311–24. doi: 10.1016/j.redox.2017.03.001.
  • Lyons, C. L, and H. M. Roche. 2018. Nutritional modulation of AMPK-impact upon metabolic-inflammation. International Journal of Molecular Sciences 19 (10):3092. doi: 10.3390/ijms19103092.
  • Marín-Aguilar, F., L. Pavillard, F. Giampieri, P. Bullón, and M. Cordero. 2017. Adenosine monophosphate (AMP)-activated protein kinase: A new target for nutraceutical compounds. International Journal of Molecular Sciences 18 (2):288. doi: 10.3390/ijms18020288.
  • McIlwain, D. R., T. Berger, and T. W. Mak. 2013. Caspase functions in cell death and disease. Cold Spring Harbor Perspectives in Biology 5 (4):a008656–28. doi: 10.1101/cshperspect.a008656.
  • Meng, H.-Y., D.-C. Shao, H. Li, X.-D. Huang, G. Yang, B. Xu, and H.-Y. Niu. 2018. Resveratrol improves neurological outcome and neuroinflammation following spinal cord injury through enhancing autophagy involving the AMPK/mTOR pathway. Molecular Medicine Reports 18 (2):2237–44. doi: 10.3892/mmr.2018.9194.
  • Meng, X., J. Zhou, C.-N. Zhao, R.-Y. Gan, and H.-B. Li. 2020. Health benefits and molecular mechanisms of resveratrol: A narrative review. Foods 9 (3):340. doi: 10.3390/foods9030340.
  • Muraleedharan, R, and B. Dasgupta. 2022. AMPK in the brain: Its roles in glucose and neural metabolism. The FEBS Journal 289 (8):2247–62. doi: 10.1111/febs.16151.
  • Myers, R. W., H.-P. Guan, J. Ehrhart, A. Petrov, S. Prahalada, E. Tozzo, X. Yang, M. M. Kurtz, M. Trujillo, D. Gonzalez Trotter, et al. 2017. Systemic pan-AMPK activator MK-8722 improves glucose homeostasis but induces cardiac hypertrophy. Science (New York, N.Y.) 357 (6350):507–11. doi: 10.1126/science.aah5582.
  • Netea, M. G., F. Balkwill, M. Chonchol, F. Cominelli, M. Y. Donath, E. J. Giamarellos-Bourboulis, D. Golenbock, M. S. Gresnigt, M. T. Heneka, H. M. Hoffman, et al. 2017. A guiding map for inflammation. Nature Immunology 18 (8):826–31. doi: 10.1038/ni.3790.
  • Ou, H., C. Liu, W. Feng, X. Xiao, S. Tang, and Z. Mo. 2018. Role of AMPK in atherosclerosis via autophagy regulation. Science China. Life Sciences 61 (10):1212–21. doi: 10.1007/s11427-017-9240-2.
  • Paone, S., A. A. Baxter, M. D. Hulett, and I. K. H. Poon. 2019. Endothelial cell apoptosis and the role of endothelial cell-derived extracellular vesicles in the progression of atherosclerosis. Cellular and Molecular Life Sciences : CMLS 76 (6):1093–106. doi: 10.1007/s00018-018-2983-9.
  • Park, H.-Y., Y. Kunitake, N. Hirasaki, M. Tanaka, and T. Matsui. 2015. Theaflavins enhance intestinal barrier of Caco-2 Cell monolayers through the expression of AMP-activated protein kinase-mediated Occludin, Claudin-1, and ZO-1. Bioscience, Biotechnology, and Biochemistry 79 (1):130–7. doi: 10.1080/09168451.2014.951027.
  • Park, S. Y., M. L. Jin, E. H. Yi, Y. Kim, and G. Park. 2018. Neochlorogenic acid inhibits against LPS-activated inflammatory responses through up-regulation of Nrf2/HO-1 and involving AMPK pathway. Environmental Toxicology and Pharmacology 62:1–10. doi: 10.1016/j.etap.2018.06.001.
  • Peng, L., Z.-R. Li, R. S. Green, I. R. Holzman, and J. Lin. 2009. Butyrate enhances the intestinal barrier by facilitating tight junction assembly via activation of AMP-activated protein kinase in Caco-2 cell monolayers. The Journal of Nutrition 139 (9):1619–25. doi: 10.3945/jn.109.104638.
  • Ponnusamy, L., S. R. Natarajan, K. Thangaraj, and R. Manoharan. 2020. Therapeutic aspects of AMPK in breast cancer: Progress, challenges, and future directions. Biochimica et Biophysica Acta. Reviews on Cancer 1874 (1):188379. doi: 10.1016/j.bbcan.2020.188379.
  • Popov, L.-D. 2020. Mitochondrial biogenesis: An update. Journal of Cellular and Molecular Medicine 24 (9):4892–9. doi: 10.1111/jcmm.15194.
  • Qiu, L., Y. Luo, and X. Chen. 2018. Quercetin attenuates mitochondrial dysfunction and biogenesis via upregulated AMPK/SIRT1 signaling pathway in OA rats. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie 103:1585–91. doi: 10.1016/j.biopha.2018.05.003.
  • Qiu, Y.-L., X.-N. Cheng, F. Bai, L.-Y. Fang, H.-Z. Hu, and D.-Q. Sun. 2018. Aucubin protects against lipopolysaccharide-induced acute pulmonary injury through regulating Nrf2 and AMPK pathways. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie 106:192–9. doi: 10.1016/j.biopha.2018.05.070.
  • Roda, G., S. Chien Ng, P. G. Kotze, M. Argollo, R. Panaccione, A. Spinelli, A. Kaser, L. Peyrin-Biroulet, and S. Danese. 2020. Crohn’s disease. Nature Reviews. Disease Primers 6 (1):22. doi: 10.1038/s41572-020-0156-2.
  • Ruparelia, N, and R. Choudhury. 2020. Inflammation and atherosclerosis: What is on the horizon? Heart (British Cardiac Society) 106 (1):80–5. doi: 10.1136/heartjnl-2018-314230.
  • Sabino, J., B. Verstockt, S. Vermeire, and M. Ferrante. 2019. New biologics and small molecules in inflammatory bowel disease: An update. Therapeutic Advances in Gastroenterology 12:1756284819853208. doi: 10.1177/1756284819853208.
  • Sag, D., D. Carling, R. D. Stout, and J. Suttles. 2008. AMP-activated protein kinase promotes macrophage polarization to an anti-inflammatory functional phenotype. The Journal of Immunology 181 (12):8633–41. doi: 10.4049/jimmunol.181.12.8633.
  • Saqib, U., S. Sarkar, K. Suk, O. Mohammad, M. S. Baig, and R. Savai. 2018. Phytochemicals as modulators of M1-M2 macrophages in inflammation. Oncotarget 9 (25):17937–50. doi: 10.18632/oncotarget.24788.
  • Shahidi, F, and J. Yeo. 2018. Bioactivities of phenolics by focusing on suppression of chronic diseases: A review. International Journal of Molecular Sciences 19 (6):1573. doi: 10.3390/ijms19061573.
  • Shao, B.-Z., P. Ke, Z.-Q. Xu, W. Wei, M.-H. Cheng, B.-Z. Han, X.-W. Chen, D.-F. Su, and C. Liu. 2017. Autophagy plays an important role in anti-inflammatory mechanisms stimulated by alpha7 nicotinic acetylcholine receptor. Frontiers in Immunology 8:553. 10.3389/fimmu.2017.00553.
  • Shao, B.-Z., S.-L. Wang, J. Fang, Z.-S. Li, Y. Bai, and K. Wu. 2019. Alpha7 nicotinic acetylcholine receptor alleviates inflammatory bowel disease through induction of AMPK-mTOR-p70S6K-mediated autophagy. Inflammation 42 (5):1666–79. doi: 10.1007/s10753-019-01027-9.
  • Shi, X., H. Sun, D. Zhou, H. Xi, and L. Shan. 2015. Arctigenin attenuates lipopolysaccharide-induced acute lung injury in rats. Inflammation 38 (2):623–31. doi: 10.1007/s10753-014-9969-z.
  • Song, Y., Y. Zhao, Y. Ma, Z. Wang, L. Rong, B. Wang, and N. Zhang. 2021. Biological functions of NLRP3 inflammasome: A therapeutic target in inflammatory bowel disease. Cytokine & Growth Factor Reviews 60:61–75. doi: 10.1016/j.cytogfr.2021.03.003.
  • Steinberg, G. R, and D. Carling. 2019. AMP-activated protein kinase: The current landscape for drug development. Nature Reviews. Drug Discovery 18 (7):527–51. doi: 10.1038/s41573-019-0019-2.
  • Sun, P., J.-B. Yin, L.-H. Liu, J. Guo, S.-H. Wang, C.-H. Qu, and C.-X. Wang. 2019. Protective role of Dihydromyricetin in Alzheimer’s disease rat model associated with activating AMPK/SIRT1 signaling pathway. Biosci Rep 39 (1):BSR20180902. doi: 10.1042/BSR20180902.
  • Sun, X, and M.-J. Zhu. 2017. AMP-activated protein kinase: A therapeutic target in intestinal diseases. Open Biology 7 (8):170104–11. doi: 10.1098/rsob.170104.
  • Takahara, M., A. Takaki, S. Hiraoka, T. Adachi, Y. Shimomura, H. Matsushita, T. T. T. Nguyen, K. Koike, A. Ikeda, S. Takashima, et al. 2019. Berberine improved experimental chronic colitis by regulating interferon-γ- and IL-17A-producing lamina propria CD4+ T cells through AMPK activation. Scientific Reports 9 (1):11934. doi: 10.1038/s41598-019-48331-w.
  • Tang, C.-H. 2019. Research of pathogenesis and novel therapeutics in arthritis. International Journal of Molecular Sciences 20 (7):1646. doi: 10.3390/ijms20071646.
  • Tanwar, S., F. Rhodes, A. Srivastava, P. M. Trembling, and W. M. Rosenberg. 2020. Inflammation and fibrosis in chronic liver diseases including non-alcoholic fatty liver disease and hepatitis C. World Journal of Gastroenterology 26 (2):109–33. doi: 10.3748/wjg.v26.i2.109.
  • Tao, L., F. Cao, G. Xu, H. Xie, M. Zhang, and C. Zhang. 2017. Mogroside IIIE attenuates LPS-induced acute lung injury in mice partly through regulation of the TLR4/MAPK/NF-κB axis via AMPK activation. Phytotherapy Research : PTR 31 (7):1097–106. doi: 10.1002/ptr.5833.
  • Tarasiuk, O., M. Miceli, A. Di Domizio, and G. Nicolini. 2022. AMPK and diseases: State of the art regulation by AMPK-targeting molecules. Biology (Basel) 11 (7):1041. doi: 10.3390/biology11071041.
  • Tian, T., Z. Wang, and J. Zhang. 2017. Pathomechanisms of oxidative stress in inflammatory bowel disease and potential antioxidant therapies. Oxidative Medicine and Cellular Longevity 2017:4535194–18. doi: 10.1155/2017/4535194.
  • Tian, X. Y., S. Ma, G. Tse, W. T. Wong, and Y. Huang. 2018. Uncoupling protein 2 in cardiovascular health and disease. Frontiers in Physiology 9:1060–13. 10.3389/fphys.2018.01060.
  • Tian, Y., T. Chen, W. Yan, L. Yang, L. Wang, X. Fan, W. Zhang, J. Feng, H. Yu, Y. Yang, et al. 2017. Pioglitazone stabilizes atherosclerotic plaque by regulating the Th17/Treg balance in AMPK-dependent mechanisms. Cardiovascular Diabetology 16 (1):1–9. doi: 10.1186/s12933-017-0623-6.
  • Tian, Y., J. Ma, W. Wang, L. Zhang, J. Xu, K. Wang, and D. Li. 2016. Resveratrol supplement inhibited the NF-κB inflammation pathway through activating AMPKα-SIRT1 pathway in mice with fatty liver. Molecular and Cellular Biochemistry 422 (1-2):75–84. doi: 10.1007/s11010-016-2807-x.
  • Tousoulis, D., E. Oikonomou, E. K. Economou, F. Crea, and J. C. Kaski. 2016. Inflammatory cytokines in atherosclerosis: Current therapeutic approaches. European Heart Journal 37 (22):1723–32. doi: 10.1093/eurheartj/ehv759.
  • Tsai, C.-F., Y.-H. Kuo, W.-L. Yeh, C. Y.-J. Wu, H.-Y. Lin, S.-W. Lai, Y.-S. Liu, L.-H. Wu, J.-K. Lu, and D.-Y. Lu. 2015. Regulatory effects of caffeic acid phenethyl ester on neuroinflammation in microglial cells. International Journal of Molecular Sciences 16 (3):5572–89. doi: 10.3390/ijms16035572.
  • Uprety, B, and H. Abrahamse. 2022. Targeting breast cancer and their stem cell population through AMPK activation: Novel insights. Cells 11 (3):576. doi: 10.3390/cells11030576.
  • Vaamonde-García, C., Riveiro, Naveira, R. R. Valcárcel, Ares, M. N. Hermida, Carballo, L. Blanco, F. J. López, and Armada, M. J. 2012. Mitochondrial dysfunction increases inflammatory responsiveness to cytokines in normal human chondrocytes. Arthritis and Rheumatism 64 (9):2927–36. doi: 10.1002/art.34508.
  • Vaez, H., M. Najafi, M. Rameshrad, N. S. Toutounchi, M. Garjani, J. Barar, and A. Garjani. 2016. AMPK activation by metformin inhibits local innate immune responses in the isolated rat heart by suppression of TLR 4-related pathway. International Immunopharmacology 40:501–7. doi: 10.1016/j.intimp.2016.10.002.
  • Valcárcel-Ares, M. N., R. R. Riveiro-Naveira, C. Vaamonde-García, J. Loureiro, L. Hermida-Carballo, F. J. Blanco, and M. J. López-Armada. 2014. Mitochondrial dysfunction promotes and aggravates the inflammatory response in normal human synoviocytes. Rheumatology (Oxford, England) 53 (7):1332–43. doi: 10.1093/rheumatology/keu016.
  • Vara-Ciruelos, D., F. M. Russell, and D. G. Hardie. 2019. The strange case of AMPK and cancer: Dr Jekyll or Mr Hyde? Open Biology 9 (7):190099. doi: 10.1098/rsob.190099.
  • Vasamsetti, S. B., S. Karnewar, R. Gopoju, P. N. Gollavilli, S. R. Narra, J. M. Kumar, and S. Kotamraju. 2016. Resveratrol attenuates monocyte-to-macrophage differentiation and associated inflammation via modulation of intracellular GSH homeostasis: Relevance in atherosclerosis. Free Radical Biology & Medicine 96:392–405. doi: 10.1016/j.freeradbiomed.2016.05.003.
  • Vucicevic, L., M. Misirkic, J. Kristina, U. Vilimanovich, E. Sudar, E. Isenovic, M. Prica, L. Harhaji-Trajkovic, T. Kravic-Stevovic, B. Vladimir, et al. 2011. Compound C induces protective autophagy in cancer cells through AMPK inhibition-independent blockade of Akt/mTOR pathway. Autophagy 7 (1):40–50. doi: 10.4161/auto.7.1.13883.
  • Wang, F., Y. Liu, W. Yang, J. Yuan, and Z. Mo. 2018. Adiponectin inhibits NLRP3 inflammasome by modulating the AMPK-ROS pathway. International Journal of Clinical and Experimental Pathology 11 (7):3338–47.
  • Wang, J., L. Zhang, L. Dong, X. Hu, F. Feng, and F. Chen. 2019. 6-Gingerol, a Functional Polyphenol of Ginger, Promotes Browning through an AMPK-Dependent Pathway in 3T3-L1 Adipocytes. Journal of Agricultural and Food Chemistry 67 (51):14056–65. doi: 10.1021/acs.jafc.9b05072.
  • Wang, Q., M. Zhang, B. Liang, N. Shirwany, Y. Zhu, and M.-H. Zou. 2011. Activation of AMP-activated protein kinase is required for berberine-induced reduction of atherosclerosis in mice: The role of uncoupling protein 2. PloS One 6 (9):e25436. doi: 10.1371/journal.pone.0025436.
  • Wang, S., M. Tian, R. Yang, Y. Jing, W. Chen, J. Wang, X. Zheng, and F. Wang. 2018. 6-Gingerol ameliorates behavioral changes and atherosclerotic lesions in ApoE−/− mice exposed to chronic mild stress. Cardiovascular Toxicology 18 (5):420–30. doi: 10.1007/s12012-018-9452-4.
  • Wang, Y., Y. Huang, K. S. L. Lam, Y. Li, W. T. Wong, H. Ye, C.-W. Lau, P. M. Vanhoutte, and A. Xu. 2009. Berberine prevents hyperglycemia-induced endothelial injury and enhances vasodilatation via adenosine monophosphate-activated protein kinase and endothelial nitric oxide synthase. Cardiovascular Research 82 (3):484–92. doi: 10.1093/cvr/cvp078.
  • Wang, Y., Zhao, X. Lotz, M. Terkeltaub, R. Liu, and Bryan, R. ‐ 2015. Mitochondrial biogenesis is impaired in osteoarthritis chondrocytes but reversible via peroxisome proliferator–activated receptor γ coactivator 1α. Arthritis & Rheumatology (Hoboken, N.J.) 67 (8):2141–53. doi: 10.1002/art.39182.
  • Warren, C. F. A., M. W. Wong-Brown, and N. A. Bowden. 2019. BCL-2 family isoforms in apoptosis and cancer. Cell Death & Disease 10 (3):177. doi: 10.1038/s41419-019-1407-6.
  • Wei, W., M. Ding, K. Zhou, H. Xie, M. Zhang, and C. Zhang. 2017. Protective effects of wedelolactone on dextran sodium sulfate induced murine colitis partly through inhibiting the NLRP3 inflammasome activation via AMPK signaling. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie 94:27–36. doi: 10.1016/j.biopha.2017.06.071.
  • Wu, J., X. Xu, Y. Li, J. Kou, F. Huang, B. Liu, and K. Liu. 2014. Quercetin, luteolin and epigallocatechin gallate alleviate TXNIP and NLRP3-mediated inflammation and apoptosis with regulation of AMPK in endothelial cells. European Journal of Pharmacology 745:59–68. doi: 10.1016/j.ejphar.2014.09.046.
  • Wu, Q., Y. Wang, and Q. Li. 2021. Matairesinol exerts anti-inflammatory and antioxidant effects in sepsis-mediated brain injury by repressing the MAPK and NF-κB pathways through up-regulating AMPK. Aging 13 (20):23780–95. 10.18632/aging.203649.
  • Xiang, H.-C., L.-X. Lin, X.-F. Hu, H. Zhu, H.-P. Li, R.-Y. Zhang, L. Hu, W.-T. Liu, Y.-L. Zhao, Y. Shu, et al. 2019. AMPK activation attenuates inflammatory pain through inhibiting NF-κB activation and IL-1β expression. Journal of Neuroinflammation 16 (1):1–12. doi: 10.1186/s12974-019-1411-x.
  • Xu, B., Y.-L. Li, M. Xu, C.-C. Yu, M.-Q. Lian, Z.-Y. Tang, C.-X. Li, and Y. Lin. 2017. Geniposide ameliorates TNBS-induced experimental colitis in rats via reducing inflammatory cytokine release and restoring impaired intestinal barrier function. Acta Pharmacologica Sinica 38 (5):688–98. doi: 10.1038/aps.2016.168.
  • Xu, G., K. Huang, and J. Zhou. 2018. Hepatic AMP kinase as a potential target for treating nonalcoholic fatty liver disease: Evidence from studies of natural products. Current Medicinal Chemistry 25 (8):889–907. doi: 10.2174/0929867324666170404142450.
  • Xu, X., Y. Wang, Z. Wei, W. Wei, P. Zhao, B. Tong, Y. Xia, and Y. Dai. 2017. Madecassic acid, the contributor to the anti-colitis effect of madecassoside, enhances the shift of Th17 toward Treg cells via the PPARγ/AMPK/ACC1 pathway. Cell Death & Disease 8 (3):e2723. doi: 10.1038/cddis.2017.150.
  • Yan, H., H. Zhou, Y. Hu, and C. T. N. Pham. 2015. Suppression of experimental arthritis through AMP-activated protein kinase activation and autophagy modulation. Journal of Rheumatic Diseases and Treatment 1 (1):5–18. doi: 10.23937/2469-5726/1510005.
  • Yan, Y., X. E. Zhou, H. E. Xu, and K. Melcher. 2018. Structure and physiological regulation of AMPK. International Journal of Molecular Sciences 19 (11):3534. doi: 10.3390/ijms19113534.
  • Yang, F., Y. Qin, Y. Wang, S. Meng, H. Xian, H. Che, J. Lv, Y. Li, Y. Yu, Y. Bai, et al. 2019. Metformin inhibits the NLRP3 inflammasome via AMPK/mTOR-dependent effects in diabetic cardiomyopathy. International Journal of Biological Sciences 15 (5):1010–9. doi: 10.7150/ijbs.29680.
  • Yang, W., Z.-K. Tian, H.-X. Yang, Z.-J. Feng, J.-M. Sun, H. Jiang, C. Cheng, Q.-L. Ming, and C.-M. Liu. 2019. Fisetin improves lead-induced neuroinflammation, apoptosis and synaptic dysfunction in mice associated with the AMPK/SIRT1 and autophagy pathway. Food and Chemical Toxicology: An International Journal Published for the British Industrial Biological Research Association 134:110824. doi: 10.1016/j.fct.2019.110824.
  • Yu, L., S. Zhang, X-l Zhao, H. Ni, X. Song, W. Wang, L. Yao, X-h Zhao, and Y. Fu. 2020. Cyanidin-3-glucoside protects liver from oxidative damage through AMPK/Nrf2 mediated signaling pathway in vivo and in vitro. Journal of Functional Foods. 73:104148. doi: 10.1016/j.jff.2020.104148.
  • Yu, P. B., C. C. Hong, C. Sachidanandan, J. L. Babitt, D. Y. Deng, S. A. Hoyng, H. Y. Lin, K. D. Bloch, and R. T. Peterson. 2008. Dorsomorphin inhibits BMP signals required for embryogenesis and iron metabolism. Nature Chemical Biology 4 (1):33–41. doi: 10.1038/nchembio.2007.54.
  • Zadra, G., J. L. Batista, and M. Loda. 2015. Dissecting the dual role of AMPK in cancer: From experimental to human studies. Molecular Cancer Research : MCR 13 (7):1059–72. doi: 10.1158/1541-7786.MCR-15-0068.
  • Zálešák, F., D. J.-Y. D. Bon, and J. Pospíšil. 2019. Lignans and neolignans: Plant secondary metabolites as a reservoir of biologically active substances. Pharmacological Research 146:104284. doi: 10.1016/j.phrs.2019.104284.
  • Zatterale, F., M. Longo, J. Naderi, G. A. Raciti, A. Desiderio, C. Miele, and F. Beguinot. 2020. Chronic adipose tissue inflammation linking obesity to insulin resistance and type 2 diabetes. Frontiers in Physiology 10:1607. doi: 10.3389/fphys.2019.01607.
  • Zhang, H., W. Lang, X. Liu, J. Bai, Q. Jia, and Q. Shi. 2022. Procyanidin A1 alleviates DSS-induced ulcerative colitis via regulating AMPK/mTOR/p70S6K-mediated autophagy. Journal of Physiology and Biochemistry 78 (1):213–27. doi: 10.1007/s13105-021-00854-5.
  • Zhang, Q.-Y., Y. Pan, R. Wang, L.-L. Kang, Q.-C. Xue, X.-N. Wang, and L.-D. Kong. 2014. Quercetin inhibits AMPK/TXNIP activation and reduces inflammatory lesions to improve insulin signaling defect in the hypothalamus of high fructose-fed rats. The Journal of Nutritional Biochemistry 25 (4):420–8. doi: 10.1016/j.jnutbio.2013.11.014.
  • Zhang, X., A. Xu, J. Lv, Q. Zhang, Y. Ran, C. Wei, and J. Wu. 2020. Development of small molecule inhibitors targeting NLRP3 inflammasome pathway for inflammatory diseases. European Journal of Medicinal Chemistry 185:111822. doi: 10.1016/j.ejmech.2019.111822.
  • Zhao, C., Y. Zhang, H. Liu, P. Li, H. Zhang, and G. Cheng. 2017. Fortunellin protects against high fructose-induced diabetic heart injury in mice by suppressing inflammation and oxidative stress via AMPK/Nrf-2 pathway regulation. Biochemical and Biophysical Research Communications 490 (2):552–9. doi: 10.1016/j.bbrc.2017.06.076.
  • Zhao, X., Petursson, F. Viollet, B. Lotz, M. Terkeltaub, R. Liu, and Bryan, R. 2014. Peroxisome proliferator–activated receptor γ coactivator 1α and FoxO3A mediate chondroprotection by AMP-activated protein kinase. Arthritis & Rheumatology (Hoboken, N.J.) 66 (11):3073–82. doi: 10.1002/art.38791.
  • Zhou, J., Y. Yu, X. Yang, Y. Wang, Y. Song, Q. Wang, Z. Chen, S. Zong, M. Fan, X. Meng, et al. 2019. Berberine attenuates arthritis in adjuvant-induced arthritic rats associated with regulating polarization of macrophages through AMPK/NF-кB pathway. European Journal of Pharmacology 852:179–88. doi: 10.1016/j.ejphar.2019.02.036.
  • Zhou, K., R. Cheng, B. Liu, L. Wang, H. Xie, and C. Zhang. 2018. Eupatilin ameliorates dextran sulphate sodium-induced colitis in mice partly through promoting AMPK activation. Phytomedicine : international Journal of Phytotherapy and Phytopharmacology 46:46–56. doi: 10.1016/j.phymed.2018.04.033.
  • Zhou, R., A. Tardivel, B. Thorens, I. Choi, and J. Tschopp. 2010. Thioredoxin-interacting protein links oxidative stress to inflammasome activation. Nature Immunology 11 (2):136–40. doi: 10.1038/ni.1831.
  • Zhou, S., W. Lu, L. Chen, Q. Ge, D. Chen, Z. Xu, D. Shi, J. Dai, J. Li, H. Ju, et al. 2017. AMPK deficiency in chondrocytes accelerated the progression of instability-induced and ageing-associated osteoarthritis in adult mice. Scientific Reports 7 (1):43245. doi: 10.1038/srep43245.
  • Zhou, Y., Z.-Q. Cao, H.-Y. Wang, Y.-N. Cheng, L.-G. Yu, X.-K. Zhang, Y. Sun, and X.-L. Guo. 2017. The anti-inflammatory effects of Morin hydrate in atherosclerosis is associated with autophagy induction through cAMP signaling. Molecular Nutrition & Food Research 61 (9):1600966. doi: 10.1002/mnfr.201600966.
  • Zhou, Y., S.-Q. Liu, L. Yu, B. He, S.-H. Wu, Q. Zhao, S.-Q. Xia, and H.-J. Mei. 2015. Berberine prevents nitric oxide-induced rat chondrocyte apoptosis and cartilage degeneration in a rat osteoarthritis model via AMPK and p38 MAPK signaling. Apoptosis : an International Journal on Programmed Cell Death 20 (9):1187–99. doi: 10.1007/s10495-015-1152-y.
  • Zhu, Z., J. Li, G. Ruan, G. Wang, C. Huang, and C. Ding. 2018. Investigational drugs for the treatment of osteoarthritis, an update on recent developments. Expert Opinion on Investigational Drugs 27 (11):881–900. doi: 10.1080/13543784.2018.1539075.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.