383
Views
2
CrossRef citations to date
0
Altmetric
Review Articles

Emergence of persister cells in Staphylococcus aureus: calculated or fortuitous move?

ORCID Icon, ORCID Icon, , , & ORCID Icon
Pages 64-75 | Received 02 Nov 2021, Accepted 12 Dec 2022, Published online: 22 Dec 2022

References

  • Allison KR, Brynildsen MP, Collins JJ. 2011. Metabolite-enabled eradication of bacterial persisters by aminoglycosides. Nature. 473(7346):216–220.
  • Baldry M, Bojer MS, Najarzadeh Z, Vestergaard M, Meyer RL, Otzen DE, Ingmer H. 2020. Phenol-soluble modulins modulate persister cell formation in Staphylococcus aureus. Front Microbiol. 11:573253.
  • Bartell JA, Cameron DR, Mojsoska B, Haagensen JAJ, Pressler T, Sommer LM, Lewis K, Molin S, Johansen HK. 2020. Bacterial persisters in long-term infection: emergence and fitness in a complex host environment. PLOS Pathog. 16(12):e1009112.
  • Batte JL, Samanta D, Elasri MO. 2016. MsaB activates capsule production at the transcription level in Staphylococcus aureus. Microbiology. 162(3):575–589.
  • Becker S, et al. 2014. Release of protein A from the cell wall of Staphylococcus aureus. Proc Natl Acad Sci USA. 111(4):1574–1579.
  • Bigger J. 1944. Treatment of staphylococcal infections with penicillin by intermittent sterilisation. Lancet. 244(6320):497–500.
  • Bojer MS, Lindemose S, Vestergaard M, Ingmer H. 2018. Quorum sensing-regulated phenol-soluble modulins limit persister cell populations in Staphylococcus aureus. Front Microbiol. 9:255.
  • Cheung GYC, Joo H-S, Chatterjee SS, Otto M. 2014. Phenol-soluble modulins – critical determinants of staphylococcal virulence. FEMS Microbiol Rev. 38(4):698–719.
  • Christensen SK, Maenhaut-Michel G, Mine N, Gottesman S, Gerdes K, Van Melderen L. 2004. Overproduction of the Lon protease triggers inhibition of translation in Escherichia coli: involvement of the yefM-yoeB toxin-antitoxin system. Mol Microbiol. 51(6):1705–1717.
  • Cohen NR, Lobritz MA, Collins JJ. 2013. Microbial persistence and the road to drug resistance. Cell Host Microbe. 13(6):632–642.
  • Conlon BP, Nakayasu ES, Fleck LE, LaFleur MD, Isabella VM, Coleman K, Leonard SN, Smith RD, Adkins JN, Lewis K, et al. 2013. Activated ClpP kills persisters and eradicates a chronic biofilm infection. Nature. 503(7476):365–370.
  • Conlon BP, Rowe SE, Gandt AB, Nuxoll AS, Donegan NP, Zalis EA, Clair G, Adkins JN, Cheung AL, Lewis K, et al. 2016. Persister formation in Staphylococcus aureus is associated with ATP depletion. Nat Microbiol. 1(5):1–7.
  • Dawan J, Wei S, Ahn J. 2020. Role of antibiotic stress in phenotypic switching to persister cells of antibiotic-resistant Staphylococcus aureus. Ann Microbiol. 70(1):1.
  • Donegan NP, Cheung AL. 2009. Regulation of the mazEF toxin-antitoxin module in Staphylococcus aureus and its impact on sigB expression. J Bacteriol. 191(8):2795–2805.
  • Ebner P, Luqman A, Reichert S, Hauf K, Popella P, Forchhammer K, Otto M, Götz F. 2017. Non-classical protein excretion is boosted by PSMα-induced cell leakage. Cell Rep. 20(6):1278–1286.
  • Gerdes K. 2000. Toxin-antitoxin modules may regulate synthesis of macromolecules during nutritional stress. J Bacteriol. 182(3):561–572.
  • Habib G, Zhu J, Sun B. 2020. A novel type I toxin-antitoxin system modulates persister cell formation in Staphylococcus aureus. Int J Med Microbiol. 310(2):151400.
  • Hou J, Veeregowda DH, van de Belt-Gritter B, Busscher HJ, van der Mei HC. 2018. Extracellular polymeric matrix production and relaxation under fluid shear and mechanical pressure in Staphylococcus aureus biofilms. Appl Environ Microbiol. 84(1):6.
  • Jenul C, Horswill AR. 2019. Regulation of Staphylococcus aureus virulence. Microbiol Spectr. 7(2):1.
  • Johnson PJT, Levin BR. 2013. Pharmacodynamics, population dynamics, and the evolution of persistence in Staphylococcus aureus. PLOS Genet. 9(1):e1003123.
  • Kamada K, Hanaoka F. 2005. Conformational change in the catalytic site of the ribonuclease YoeB toxin by YefM antitoxin. Mol Cell. 19(4):497–509.
  • Kamble E, Pardesi K. 2021. Antibiotic tolerance in biofilm and stationary-phase planktonic cells of Staphylococcus aureus. Microb Drug Resist. 27(1):3–12.
  • Kamruzzaman M, Wu AY, Iredell JR. 2021. Biological functions of type II toxin-antitoxin systems in bacteria. Microorganisms. 9(6):1276.
  • Karimaei S, Kazem Aghamir SM, Foroushani AR, Pourmand MR. 2021. Antibiotic tolerance in biofilm persister cells of Staphylococcus aureus and expression of toxin-antitoxin system genes. Microb Pathog. 159:105126.
  • Kato F, Yabuno Y, Yamaguchi Y, Sugai M, Inouye M. 2017. Deletion of mazF increases Staphylococcus aureus biofilm formation in an ICA-dependent manner. Pathog Dis. 75(5):9.
  • Keren I, Kaldalu N, Spoering A, Wang Y, Lewis K. 2004. Persister cells and tolerance to antimicrobials. FEMS Microbiol Lett. 230(1):13–18.
  • Kim W, Conery AL, Rajamuthiah R, Fuchs BB, Ausubel FM, Mylonakis E. 2015. Identification of an antimicrobial agent effective against methicillin-resistant Staphylococcus aureus persisters using a fluorescence-based screening strategy. PLOS One. 10(6):e0127640.
  • Kubistova L, Dvoracek L, Tkadlec J, Melter O, Licha I. 2018. Environmental stress affects the formation of Staphylococcus aureus persisters tolerant to antibiotics. Microb Drug Resist. 24(5):547–555.
  • Kuehl R, Morata L, Meylan S, Mensa J, Soriano A. 2020. When antibiotics fail: a clinical and microbiological perspective on antibiotic tolerance and persistence of Staphylococcus aureus. J Antimicrob Chemother. 75(5):1071–1086.
  • Kwan BW, Valenta JA, Benedik MJ, Wood TK. 2013. Arrested protein synthesis increases persister-like cell formation. Antimicrob Agents Chemother. 57(3):1468–1473.
  • Lechner S, Lewis K, Bertram R. 2012. Staphylococcus aureus persisters tolerant to bactericidal antibiotics. J Mol Microbiol Biotechnol. 22(4):235–244.
  • Lechner S, Patra P, Klumpp S, Bertram R. 2012. Interplay between population dynamics and drug tolerance of Staphylococcus aureus persister cells. J Mol Microbiol Biotechnol. 22(6):381–391.
  • Lee JW, Park YH, Seok YJ. 2018. Rsd balances (p)ppGpp level by stimulating the hydrolase activity of SpoT during carbon source downshift in Escherichia coli. Proc Natl Acad Sci USA. 115(29):E6845–E6854.
  • Lewis K. 2010. Persister cells. Annu Rev Microbiol. 64(1):357–372.
  • Li J, Wen Q, Gu F, An L, Yu T. 2022. Non-antibiotic strategies for prevention and treatment of internalised Staphylococcus aureus. Front Microbiol. 13:974984.
  • Lister JL, Horswill AR. 2014. Staphylococcus aureus biofilms: recent developments in biofilm dispersal. Front Cell Infect Microbiol. 4:178.
  • Marques CNH, Davies DG, Sauer K. 2015. Control of biofilms with the fatty acid signaling molecule cis-2-decenoic acid. Pharmaceuticals. 8(4):816–835.
  • Miller LS, Cho JS. 2011. Immunity against Staphylococcus aureus cutaneous infections. Nat Rev Immunol. 11(8):505–518.
  • Molina-Quiroz RC, Silva-Valenzuela C, Brewster J, Castro-Nallar E, Levy SB, Camilli A. 2018. Cyclic AMP regulates bacterial persistence through repression of the oxidative stress response and SOS-dependent DNA repair in uropathogenic Escherichia coli. mBio. 9(1):5.
  • Moyed HS, Bertrand KP. 1983. hipA, a newly recognised gene of Escherichia coli K-12 that affects frequency of persistence after inhibition of murein synthesis. J Bacteriol. 155(2):768–775.
  • Otto M. 2014. Staphylococcus aureus toxins. Curr Opin Microbiol. 17:32–37.
  • Pandey S, Sahukhal GS, Elasri MO. 2019. The msaABCR operon regulates the response to oxidative stress in Staphylococcus aureus. J Bacteriol. 201(21):11.
  • Pandey S, Sahukhal GS, Elasri MO. 2021. The msaABCR operon regulates persister formation by modulating energy metabolism in Staphylococcus aureus. Front Microbiol. 12:657753.
  • Pascoe B, Dams L, Wilkinson TS, Harris LG, Bodger O, Mack D, Davies AP. 2014. Dormant cells of Staphylococcus aureus are resuscitated by spent culture supernatant. PLOS One. 9(2):e85998.
  • Pavelich IJ, Maehigashi T, Hoffer ED, Ruangprasert A, Miles SJ, Dunham CM. 2019. Monomeric YoeB toxin retains RNase activity but adopts an obligate dimeric form for thermal stability. Nucleic Acids Res. 47(19):10400–10413.
  • Peyrusson F, Tulkens PM, van Bambeke F. 2018. Cellular pharmacokinetics and intracellular activity of gepotidacin against Staphylococcus aureus isolates with different resistance phenotypes in models of cultured phagocytic cells. Antimicrob Agents Chemother. 62(4):4.
  • Pinel-Marie ML, Brielle R, Felden B. 2014. Dual toxic-peptide-coding Staphylococcus aureus RNA under antisense regulation targets host cells and bacterial rivals unequally. Cell Rep. 7(2):424–435.
  • Prax M, Bertram R. 2014. Metabolic aspects of bacterial persisters. Front Cell Infect Microbiol. 4(OCT):148.
  • Sahukhal GS, Pandey S, Elasri MO. 2017. MsaABCR operon is involved in persister cell formation in Staphylococcus aureus. BMC Microbiol. 17(1):10.
  • Sayed N, Nonin-Lecomte S, Réty S, Felden B. 2012. Functional and structural insights of a Staphylococcus aureus apoptotic-like membrane peptide from a toxin-antitoxin module. J Biol Chem. 287(52):43454–43463.
  • Schuster C, Bertram R. 2016. Toxin-antitoxin systems of Staphylococcus aureus. Toxins. 8(5):140.
  • Siegmund A, Afzal MA, Tetzlaff F, Keinhörster D, Gratani F, Paprotka K, Westermann M, Nietzsche S, Wolz C, Fraunholz M, et al. 2021. Intracellular persistence of Staphylococcus aureus in endothelial cells is promoted by the absence of phenol-soluble modulins. Virulence. 12(1):1186–1198.
  • Singh R, Ray P, Das A, Sharma M. 2009. Role of persisters and small-colony variants in antibiotic resistance of planktonic and biofilm-associated Staphylococcus aureus: an in vitro study. J Med Microbiol. 58(8):1067–1073.
  • Singh R, Ray P, Das A, Sharma M. 2010. Penetration of antibiotics through Staphylococcus aureus and Staphylococcus epidermidis biofilms. J Antimicrob Chemother. 65(9):1955–1958.
  • Somerville GA, Beres SB, Fitzgerald JR, DeLeo FR, Cole RL, Hoff JS, Musser JM. 2002. In vitro serial passage of Staphylococcus aureus: changes in physiology, virulence factor production, and agr nucleotide sequence. J Bacteriol. 184(5):1430–1437.
  • Song S, Wood TK. 2020. ppGpp ribosome dimerisation model for bacterial persister formation and resuscitation. Biochem Biophys Res Commun. 523(2):281–286.
  • Steinchen W, Zegarra V, Bange G. 2020. (p)ppGpp: magic modulators of bacterial physiology and metabolism. Front Microbiol. 11:2072.
  • Sumrall ET, Hofstee MI, Arens D, Röhrig C, Baertl S, Gehweiler D, Schmelcher M, Loessner MJ, Zeiter S, Richards RG, et al. 2021. An enzybiotic regimen for the treatment of methicillin-resistant Staphylococcus aureus orthopaedic device-related infection. Antibiotics. 10(10):1186.
  • Thurlow LR, Hanke ML, Fritz T, Angle A, Aldrich A, Williams SH, Engebretsen IL, Bayles KW, Horswill AR, Kielian T, et al. 2011. Staphylococcus aureus biofilms prevent macrophage phagocytosis and attenuate inflammation in vivo. J Immunol. 186(11):6585–6596.
  • Tong SYC, Chen LF, Fowler VG. 2012. Colonization, pathogenicity, host susceptibility, and therapeutics for Staphylococcus aureus: what is the clinical relevance? Semin Immunopathol. 34(2):185–200.
  • Tong SYC, Davis JS, Eichenberger E, Holland TL, Fowler VG. 2015. Staphylococcus aureus infections: epidemiology, pathophysiology, clinical manifestations, and management. Clin Microbiol Rev. 28(3):603–661.
  • Tsompanidou E, Denham EL, Becher D, de Jong A, Buist G, van Oosten M, Manson WL, Back JW, van Dijl JM, Dreisbach A, et al. 2013. Distinct roles of phenol-soluble modulins in spreading of Staphylococcus aureus on wet surfaces. Appl Environ Microbiol. 79(3):886–895.
  • Tuchscherr L, Bischoff M, Lattar SM, Noto Llana M, Pförtner H, Niemann S, Geraci J, Van de Vyver H, Fraunholz MJ, Cheung AL, et al. 2015. Sigma factor SigB is crucial to mediate Staphylococcus aureus adaptation during chronic infections. PLOS Pathog. 11(4):e1004870.
  • van den Bergh B, Fauvart M, Michiels J. 2017. Formation, physiology, ecology, evolution and clinical importance of bacterial persisters. FEMS Microbiol Rev. 41(3):219–251.
  • Vasudevan S, Joseph HA, Swamy SS, Solomon AP. 2019. Antibiotic resistance in biofilms. In: ACS Symposium Series. American Chemical Society; p. 205–224.
  • Wilmaerts D, Windels EM, Verstraeten N, Michiels J. 2019. General mechanisms leading to persister formation and awakening. Trends Genet. 35(6):401–411.
  • Wood TK, Knabel SJ, Kwan BW. 2013. Bacterial persister cell formation and dormancy. Appl Environ Microbiol. 79(23):7116–7121.
  • Xu T, Wang X-Y, Cui P, Zhang Y-M, Zhang W-H, Zhang Y. 2017. The Agr quorum sensing system represses persister formation through regulation of phenol soluble modulins in Staphylococcus aureus. Front Microbiol. 8:2189.
  • Xue L, Khan MH, Yue J, Zhu Z, Niu L. 2022. The two paralogous copies of the YoeB–YefM toxin–antitoxin module in Staphylococcus aureus differ in DNA binding and recognition patterns. J Biol Chem. 298(1):101457.
  • Yang ES, Tan J, Eells S, Rieg G, Tagudar G, Miller LG. 2010. Body site colonisation in patients with community-associated methicillin-resistant Staphylococcus aureus and other types of S. aureus skin infections. Clin Microbiol Infect. 16(5):425–431.
  • Zalis EA, Nuxoll AS, Manuse S, Clair G, Radlinski LC, Conlon BP, Adkins J, Lewis K. 2019. Stochastic variation in expression of the tricarboxylic acid cycle produces persister cells. mBio. 10(5):16.
  • Zhang Y. 2014. Persisters, persistent infections and the Yin–Yang model. Emerg Microb Infect. 3(1):1–10.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.