184
Views
1
CrossRef citations to date
0
Altmetric
Articles

Molecular dynamics simulations of displacement damage in SiGe alloys induced by single and binary primary knock-on atoms under different temperatures

, , , , , , , , , , , & show all
Pages 1384-1403 | Received 19 Apr 2023, Accepted 26 Aug 2023, Published online: 07 Sep 2023

References

  • TunÇ, A.; Ceylan, O.; YaĞci, H.B.; Paker, S. SiGe HBT Low Noise Amplifier Module for sub-six 5G Receivers, 2019 27th Telecommunications Forum (TELFOR), 2019, pp. 1–4. doi:10.1109/TELFOR48224.2019.8971175
  • Yuan, L.; Krithivasan, R.; Wei-Min Lance, K.; Cressler, J.D. A 1.8-3.1 dB noise figure (3-10 GHz) SiGe HBT LNA for UWB applications, IEEE Radio Frequency Integrated Circuits (RFIC) Symposium, 2006, 2006, p. 4 pp. doi:10.1109/RFIC.2006.1651087
  • Niu, G. Noise in SiGe HBT RF Technology: Physics, Modeling, and Circuit Implications. Proc. IEEE 2005, 93 (9), 1583–1597. doi:10.1109/JPROC.2005.852226.
  • Rücker, H.; Heinemann, B. High-performance SiGe HBTs for Next Generation BiCMOS Technology. Semicond. Sci. Technol. 2018, 33 (11), 114003. doi:10.1088/1361-6641/aade64.
  • Liu, S.-H.; Hussain, A.; Li, D.; Guo, X.; Li, Z.-Q.; Lawal, O.M.; Yang, J.; Chen, W. Total Ionizing Dose Effects of SiGe HBTs Induced by 60Co Gamma-Ray Irradiation. Nucl. Sci. Eng. 2018, 191 (1), 98–103. doi:10.1080/00295639.2018.1450004.
  • Li, Z.; Liu, S.; Adekoya, M.A.; Ren, X.; Zhang, J.; Liu, S.; Li, L. Radiation Response of SiGe low Noise Amplifier Irradiated with Different Energy Protons. Microelectron. Reliab. 2021, 127, 114396. doi:10.1016/j.microrel.2021.114396.
  • Wei, J.-n.; He, C.-h.; Li, P.; Li, Y.-h.; Guo, H.-x. Simulation of Substrate Contact Effects on Heavy ion-Induced Current Transient in SiGe HBT. Microelectron. Reliab. 2019, 95, 28–35. doi:10.1016/j.microrel.2019.02.011.
  • Jarrin, T.; Jay, A.; Raine, M.; Mousseau, N.; Hémeryck, A.; Richard, N. Simulation of Single Particle Displacement Damage in Si1−xGex Alloys—Interaction of Primary Particles With the Material and Generation of the Damage Structure. IEEE Trans. Nucl. Sci. 2020, 67 (7), 1273–1283. doi:10.1109/TNS.2020.2970488.
  • Sun, Y.; Liu, Z.; Fu, J.; Shi, Y.; Li, X. Degradation and Annealing Characteristics of NPN SiGe HBT Exposed to Heavy Ions Irradiation. Radiat. Phys. Chem. 2019, 165, 108433. doi:10.1016/j.radphyschem.2019.108433.
  • Farrell, D.E.; Bernstein, N.; Liu, W.K. Thermal Effects in 10keV Si PKA Cascades in 3C–SiC. J. Nucl. Mater. 2009, 385 (3), 572–581. doi:10.1016/j.jnucmat.2009.01.036.
  • Sun, Y.; Fu, J.; Xu, J.; Wang, Y.; Zhou, W.; Zhang, W.; Cui, J.; Li, G.; Liu, Z. Irradiation Effects of 25MeV Silicon Ions on SiGe Heterojunction Bipolar Transistors. Nucl. Instrum. Methods Phys. Res., Sect. B 2013, 312, 77–83. doi:10.1016/j.nimb.2013.07.013.
  • Thompson, A.P.; Aktulga, H.M.; Berger, R.; Bolintineanu, D.S.; Brown, W.M.; Crozier, P.S.; in't Veld, P.J.; Kohlmeyer, A.; Moore, S.G.; Nguyen, T.D.; Shan, R.; Stevens, M.J.; Tranchida, J.; Trott, C.; Plimpton, S.J. LAMMPS - a Flexible Simulation Tool for Particle-Based Materials Modeling at the Atomic, Meso, and Continuum Scales. Comput. Phys. Commun. 2022, 271, 108171. doi:10.1016/j.cpc.2021.108171.
  • Tian, S.; He, C.; He, H.; Liao, W.; Bai, Y.; Li, Y. Insight of Displacement Cascade Evolution in Gallium Arsenide Through Molecular Dynamics Simulations. Comput. Mater. Sci. 2022, 202, 111016. doi:10.1016/j.commatsci.2021.111016.
  • Shi, T.; Peng, Q.; Bai, Z.; Gao, F.; Jovanovic, I. Proton Irradiation of Graphene: Insights from Atomistic Modeling. Nanoscale. 2019, 11 (43), 20754–20765. doi:10.1039/C9NR06502D.
  • Nordlund, K.; Zinkle, S.J.; Sand, A.E.; Granberg, F.; Averback, R.S.; Stoller, R.E.; Suzudo, T.; Malerba, L.; Banhart, F.; Weber, W.J.; Willaime, F.; Dudarev, S.L.; Simeone, D. Primary Radiation Damage: A Review of Current Understanding and Models. J. Nucl. Mater. 2018, 512, 450–479. doi:10.1016/j.jnucmat.2018.10.027.
  • Byggmästar, J.; Granberg, F.; Nordlund, K. Effects of the Short-Range Repulsive Potential on Cascade Damage in Iron. J. Nucl. Mater. 2018, 508, 530–539. doi:10.1016/j.jnucmat.2018.06.005.
  • Deo, C.S.; Chen, E.Y.; Dingeville, R. Atomistic Modeling of Radiation Damage in Crystalline Materials. Modell. Simul. Mater. Sci. Eng. 2022, 30 (2), 023001. doi:10.1088/1361-651X/ac2f83.
  • Pan, X.; Guo, H.; Lu, C.; Zhang, H.; Liu, Y. The Inflection Point of Single Event Transient in SiGe HBT at a Cryogenic Temperature. Electronics 2023, 12 (3), 648. doi:10.3390/electronics12030648.
  • Zhang, J.X.; He, C.H.; Guo, H.X.; Li, P.; Guo, B.L.; Wu, X.X. Three-dimensional Simulation of Fabrication Process-Dependent Effects on Single Event Effects of SiGe Heterojunction Bipolar Transistor. Chin. Phys. B. 2017, 26 (8), 88502–088502. doi:10.1088/1674-1056/26/8/088502.
  • Xu, S. Basic Physical Charactersitics of Si1-XGex, SiGe Microelectronics Technology; National Defense Industry Press: Beijing, 2007, p. 38.
  • Dismukes, J.P.; Ekstrom, L.; Paff, R.J. Lattice Parameter and Density in Germanium-Silicon Alloys1. J. Phys. Chem. 1964, 68 (10), 3021–3027. doi:10.1021/j100792a049.
  • Zhou, Y.; Chen, B.; He, H.; Li, B.; Wang, X. Displacement Cascades in Monocrystalline Silicon: Effects of Temperature, Strain, and PKA Energy. Nucl. Technol. 2020, 206 (1), 32–39. doi:10.1080/00295450.2019.1613850.
  • Wang, Z.; Cai, X.Y.; Zhao, W.K.; Wang, H.; Ruan, Y.W. Molecular Dynamics Simulations of the Thermal Conductivity of Silicon-Germanium and Silicon-Germanium-Tin Alloys. J. Nanomater. 2021, 2021, 6675159. doi:10.1155/2021/6675159.
  • López, P.; Pelaz, L.; Santos, I.; Marqués, L.A.; Aboy, M. Molecular Dynamics Simulations of Damage Production by Thermal Spikes in Ge. J. Appl. Phys. 2012, 111 (3), 033519. doi:10.1063/1.3682108.
  • Stillinger, F.H.; Weber, T.A. Computer Simulation of Local Order in Condensed Phases of Silicon. Physical Review B 1985, 31 (8), 5262–5271. doi:10.1103/PhysRevB.31.5262.
  • Ding, K.; Andersen, H.C. Molecular-dynamics Simulation of Amorphous Germanium. Physical Review B 1986, 34 (10), 6987–6991. doi:10.1103/PhysRevB.34.6987.
  • Laradji, M.; Landau, D.P.; Dünweg, B. Structural Properties of Si1−XGex Alloys: A Monte Carlo Simulation with the Stillinger-Weber Potential. Physical Review B 1995, 51 (8), 4894–4902. doi:10.1103/PhysRevB.51.4894.
  • Fu, B.; Lai, W.; Yuan, Y.; Xu, H.; Liu, W. Calculation and Analysis of Lattice Thermal Conductivity in Tungsten by Molecular Dynamics. J. Nucl. Mater. 2012, 427 (1), 268–273. doi:10.1016/j.jnucmat.2012.05.015.
  • Lee, Y.; Hwang, G.S. Microsegregation Effects on the Thermal Conductivity of Silicon-Germanium Alloys. J. Appl. Phys. 2013, 114 (17), 174910. doi:10.1063/1.4828884.
  • Zarkadoula, E.; Samolyuk, G.; Zhang, Y.; Weber, W.J. Electronic Stopping in Molecular Dynamics Simulations of Cascades in 3C–SiC. J. Nucl. Mater. 2020, 540, 152371. doi:10.1016/j.jnucmat.2020.152371.
  • Ran, Q.; Zhou, Y.; Zou, Y.; Wang, J.; Duan, Z.; Sun, Z.; Fu, B.; Gao, S. Molecular Dynamics Simulation of Displacement Cascades in Cubic Silicon Carbide. Nuclear Materials and Energy 2021, 27, 100957. doi:10.1016/j.nme.2021.100957.
  • Jiang, M.; Xiao, H.; Peng, S.; Yang, G.; Liu, Z.; Qiao, L.; Zu, X. A Theoretical Simulation of the Radiation Responses of Si,: Ge, and Si/Ge Superlattice to Low-Energy Irradiation. Nanoscale Res. Lett. 2018, 13 (1), 133. doi:10.1186/s11671-018-2547-9.
  • Razumovskiy, V.I.; Ecker, W.; Wimler, D.; Fischer, F.D.; Appel, F.; Mayer, S.; Clemens, H. An Atomistic View on Oxygen, Antisites and Vacancies in the γ-TiAl Phase. Comput. Mater. Sci. 2021, 197, 110655. doi:10.1016/j.commatsci.2021.110655.
  • Chroneos, A.; Tahini, H.A.; Schwingenschlögl, U.; Grimes, R.W. Antisites in III-V Semiconductors: Density Functional Theory Calculations. J. Appl. Phys. 2014, 116 (2), 023505. doi:10.1063/1.4887135.
  • Liao, W.; He, C.; He, H. Molecular Dynamics Simulation of Displacement Damage in 6H-SiC. Radiat. Eff. Defects Solids 2019, 174 (9–10), 729–740. doi:10.1080/10420150.2019.1649260.
  • Agarwal, S.; Lin, Y.; Li, C.; Stoller, R.E.; Zinkle, S.J. On the use of SRIM for Calculating Vacancy Production: Quick Calculation and Full-Cascade Options. Nucl. Instrum. Methods Phys. Res., Sect. B 2021, 503, 11–29. doi:10.1016/j.nimb.2021.06.018.
  • Ghoniem, N.M.; Chou, S.P. Binary Collision Monte Carlo Simulations of Cascades in Polyatomic Ceramics. J. Nucl. Mater. 1988, 155-157, 1263–1267. doi:10.1016/0022-3115(88)90508-9.
  • Holmström, E.; Nordlund, K.; Kuronen, A. Threshold Defect Production in Germanium Determined by Density Functional Theory Molecular Dynamics Simulations. Phys. Scr. 2010, 81 (3), 035601. doi:10.1088/0031-8949/81/03/035601.
  • Yang, X.; Zeng, X.; Chen, L.; Guo, Y.; Chen, H.; Wang, F. Molecular Dynamics Simulations of the Primary Irradiation Damage in Zirconium. Nucl. Instrum. Methods Phys. Res., Sect. B 2018, 436, 92–98. doi:10.1016/j.nimb.2018.09.014.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.