288
Views
1
CrossRef citations to date
0
Altmetric
Research Article

A Weighted Fuzzy Social Network Analysis-Based Approach for Modeling and Analyzing Relationships Among Risk Factors Affecting Project Delays

, PhDORCID Icon, , PhD, , PhD, , PhD, , PhD & , PhD

References

  • Akrofi, G. Y. K. (2017). Delivering successful IT projects: A literature-based framework. Texila International Journal of Management, 3(2), 55–69. https://doi.org/10.21522/TIJMG.2015.03.02.Art028
  • Albastaki, F. M., Bashir, H., Ojiako, U., Shamsuzzaman, M., & Haridy, S. (2021). Modeling and analyzing critical success factors for implementing environmentally sustainable practices in a public utilities organization: A case study. Management of Environmental Quality: An International Journal, 32(4), 768–786. https://doi.org/10.1108/MEQ-01-2021-0002
  • Alnemer, O., Bashir, H., Ojiako, U., & Haridy, S. (2020). Modelling and analysing of delay factors in public R&D projects using an integrated ISM-Fuzzy MICMAC approach. Proceedings of the 5th NA International Conference on Industrial Engineering and Operations Management, Detroit, Michigan, (pp. 2896–2905).
  • Al Zaabi, H. A., & Bashir, H. (2018). Analyzing interdependencies in a project portfolio using social network analysis metrics. Proceedings of the proceedings of the 5th International Conference on Industrial Engineering and Applications (ICIEA), 490–494. https://doi.org/10.1109/IEA.2018.8387150
  • Al Zaabi, H., & Bashir, H. (2020). Modelling and analysing interdependencies in project portfolios using an integrated social network analysis-fuzzy TOPSIS MICMAC approach. International Journal of System Assurance Engineering and Management, 11(6), 1083–1106. https://doi.org/10.1007/s13198-020-00962
  • Alzebdeh, K., Bashir, H. A., & Al Siyabi, S. K. (2015). Applying interpretive structural modelling to cost overruns in construction projects in Sultanate of Oman. The Journal of Engineering Research, 12(1), 53–68. https://doi.org/10.24200/tjer.vol12iss1pp53-68
  • Arantes, A., & Ferreira, L. (2021). Interpretive structural model-based for analysis of causes of delays in construction projects: The Portuguese case. Proceedings of the 10th International Conference on Operations Research and Enterprise Systems (ICORES 2021), Vienna, Austria, (pp. 366–374).
  • Bashir, H., Ojiako, U., Marshall, A., Chipulu, M., & Yousif, A. A. (2022). The analysis of information flow interdependencies within projects. Production Planning & Control, 33(1), 20–36. https://doi.org/10.1080/09537287.2020.1821115
  • Bashir, H., Ojiako, U., & Mota, C. (2020). Modeling and analyzing factors affecting project delays using an integrated social network-fuzzy MICMAC approach. Engineering Management Journal, 32(1), 26–36. https://doi.org/10.1080/10429247.2019.1656595
  • Bendoly, E. (2014). System dynamics understanding in projects: Information sharing, psychological safety, and performance effects. Production and Operations Management, 23(8), 1352–1369. https://doi.org/10.1111/poms.12024
  • Calvo, E., Cui, R., & Serpa, J. C. (2019). Oversight and efficiency in public projects: A regression discontinuity analysis. Management Sciences, 65(21), 5449–5956. https://doi.org/10.1287/mnsc.2018.3202
  • Chen, C. T. (2000). Extensions of the TOPSIS for group decision-making under fuzzy environment. Fuzzy Sets and Systems, 114(1), 1–9. https://doi.org/10.1016/S0165-0114(97)00377-1
  • Chen, L., Lu, Q., & Zhao, X. (2020). Rethinking the construction schedule risk of infrastructure projects based on dialectical systems and network theory. Journal of Management in Engineering, 36(5). https://doi.org/10.1061/(ASCE)ME.1943-5479.0000829
  • Chen, S. H., & Pollino, C. A. (2012). Good practice in Bayesian network modelling. Environmental Modelling Software, 37, 134–145. https://doi.org/10.1016/j.envsoft.2012.03.012
  • Chipulu, M., Ojiako, U., Marshall, A., Williams, T., Bititci, U., Mota, C., Shou, Y., Thomas, A., El Dirani, A., Maguire, S., & Stamati, T. (2019). A dimensional analysis of stakeholder assessment of project outcomes. Production Planning & Control, 30(13), 1072–1090. https://doi.org/10.1080/09537287.2019.1567859
  • Chu, J., Liu, X., & Wang, Y. (2016). Social network analysis based approach to group decision making problem with fuzzy preference relations. Journal of Intelligent & Fuzzy Systems, 31(3), 1271–1285. https://doi.org/10.3233/IFS-162193
  • Davies, R., & Saunders, R. (1988). Applying systems theory to project management problems. International Journal of Project Management, 6(1), 19–26. https://doi.org/10.1016/0263-7863(88)90054-3
  • Deng, Y., & Chan, F. T. S. (2011). A new fuzzy dempster MCDM method and its application in supplier selection. Expert Systems with Applications, 38(8), 9854–9861. https://doi.org/10.1016/j.eswa.2011.02.017
  • DeSanctis, G. (1984). Computer graphics as decision aids: Directions for research. Decision Sciences, 15(4), 463–487. https://doi.org/10.1111/j.1540-5915.1984.tb01236.x
  • Dickson, G. W., DeSanctis, G., & McBride, D. J. (1986). Understanding the effectiveness of computer graphics for decision support: A cumulative experimental approach. Communications of the ACM, 29(1), 40–47. https://doi.org/10.1145/5465.5469
  • Eybpoosh, M., Dikmen, I., & Birgonul, M. T. (2011). Identification of risk paths in international construction projects using structural equation modelling. Journal of Construction Engineering and Management, 137(12), 1164–1175. https://doi.org/10.1061/(ASCE)CO.1943-7862.0000382
  • Fang, C., & Marle, F. A. (2012). Simulation-based risk network model for decision support in project risk management. Decision Support Systems, 52(3), 635–644. https://doi.org/10.1016/j.ress.2012.04.005
  • Fang, C., Marle, F., Zio, E., & Jean-Claude, B. (2012). Network theory-based analysis of risk interactions in large engineering projects. Reliability Engineering & System Safety, 106, 1–10. https://doi.org/10.1016/j.dss.2011.10.021
  • Ganbat, T., Chong, H., Liao, P., & Leroy, J. (2020). Identification of critical risks in international engineering procurement construction projects of Chinese contractors from the network perspective’. Canadian Journal of Civil Engineering, 47(12), 1359–1371. https://doi.org/10.1139/cjce-2019-0549
  • Grant, K. P., Cashman, W. M., & Christensen, D. S. (2006). Delivering projects on time. Research-Technology Management, 49(6), 52–58. https://doi.org/10.1080/08956308.2006.11657408
  • Größler, A., Thun, J., & Milling, P. (2008). System dynamics as a structural theory in operations management. Production and Operations Management, 17(3), 373–384. https://doi.org/10.3401/poms.1080.0023
  • Hamdan, S., & Cheaitou, A. (2017). Supplier selection and order allocation with green criteria: An MCDM and multi-objective optimization approach. Computers & Operations Research, 81(2017), 282–304.
  • Hamdan, S., Hamdan, A., Bingamil, A., Al-Zarooni, H., Bashir, H., & Alsyouf, I. (2019). Investigating delay factors in electrical installation projects using Fuzzy TOPSIS. Proceedings of the 8th International Conference on Modelling, Simulation and Applied Optimization (ICMSAO’2019), 1–5. https://doi.org/10.1109/ICMSAO.2019.8880325
  • Haseeb, M., Xinhai-Lu, B., Maloof-Ud-Dyian, A., & Rabbani, W. (2011). Problems of projects and effects of delays in the construction industry of Pakistan. Australian Journal of Business and Management Research, 1(5), 41–50. https://www.ajbmr.com/articlepdf/AJBMR_16_02.pdf
  • Hoffman, P. J., Earle, T. C., & Slovic, P. (1981). Multidimensional functional learning (MFL) and some new conceptions of feedback. Organizational Behavior & Human Performance, 27(1), 75–102. https://doi.org/10.1016/0030-5073(81)90040-4
  • Jackson, D. (2003). Revisiting Sample Size and Number of Parameter Estimates: Some Support for the N:Q Hypothesis. Structural Equation Modeling: A Multidisciplinary Journal, 10, 128–141. doi:10.1207/S15328007SEM1001_6.
  • Kikwasi, G. J. (2012). Causes and effects of delays and disruptions in construction projects in Tanzania. Australasian Journal of Construction Economics and Building, Conference Series, Conference Series, 1(2), 52–59. https://doi.org/10.5130/ajceb-cs.v1i2.3166
  • Kline, R. (2016). Principles and practice of structural equation modeling. New York: The Guilford Press.
  • Kumar, S., & Thakkar, J. J. (2017). Schedule and cost overrun analysis for R&D projects using ANP and system dynamics. International Journal of Quality & Reliability Management, 34(9), 1551–1567. https://doi.org/10.1108/IJQRM-04-2016-0050
  • Liu, J., Zhao, X., & Yan, P. (2016). Risk paths in international construction projects: Case study from Chinese contractors. Journal of Construction Engineering and Management, 142(6). https://doi.org/10.1061/(ASCE)CO.1943-7862.0001116
  • Ma, Z., Collofello, J. S., & Smith Daniels, D. E. (2000). Improving software on-time delivery: An investigation of project delays. Proceedings of the 2000 IEEE Aerospace Conference, 4, 421–434. https://doi.org/10.1109/AERO.2000.878454
  • Migliore, M., Martorana, V., & Sciortino, F. (1990). “An algorithm to find all paths between two nodes in a graph. Journal of Computational Physics, 87(1), 231–236. https://doi.org/10.1016/0021-9991(90)90235-S
  • Mok, K. Y., Shen, G. Q., Yang, R. J., & Li, C. Z. (2017). Investigating key challenges in major public engineering projects by a network-theory based analysis of stakeholder concerns: A case study. International Journal of Project Management, 35(1), 78–94. https://doi.org/10.1016/j.ijproman.2016.10.017
  • Moreno, J. (1960). The sociometry reader. The Free Press.
  • Owolabi James, D., Amusan, L. M., Oloke, C. O., Olusanya, O., Tunji- Olayeni, P., Dele, O., Joy, P. N., & Omuh, I. O. (2014). Causes and effect of delay on project construction delivery time. International Journal of Education and Research, 2(4), 197–208.
  • Pall, G. K., Bridge, A. J., Gray, J., & Skitmore, M. (2020). Causes of delay in power transmission projects: An empirical study. Energies, 13(1), 1–29. https://doi.org/10.3390/en13010017
  • Pedrycz, W. (1994). Why triangular membership functions? Fuzzy Sets and Systems, 64(1), 21–30. https://doi.org/10.1016/0165-0114(94)90003-5
  • Pehlivan, S., & Öztemir, A. E. (2018). Integrated Risk of Progress-Based Costs and Schedule Delays in Construction Projects. Engineering Management Journal, 30(2), 108–116. https://doi.org/10.1080/10429247.2018.1439636
  • Pryke, S., Badi, S., Almadhoob, H., Soundararaj, B., & Addyman, S. (2018). Self-organising networks in complex infrastructure projects. Project Management Journal, 49(2), 18–41. https://doi.org/10.1177/875697281804900202
  • Qazi, A., & Dikmen, I. (2019). From risk matrices to risk networks in construction projects. IEEE Transactions on Engineering Management, 1–12. https://doi.org/10.1109/TEM.2019.2907787
  • Qazi, A., Dikmen, I., & Birgonul, M. T. (2020). Mapping uncertainty for risk and opportunity assessment in projects. Engineering Management Journal, 32(2), 86–97. https://doi.org/10.1080/10429247.2019.1664249
  • Sambasivan, M., & Soon, Y. W. (2007). Causes and effects of delays in Malaysian construction industry. International Journal of Project Management, 25(5), 517–526. https://doi.org/10.1016/j.ijproman.2006.11.007
  • Sanni-Anibire, M. O., Zin, R. M., & Olatunji, S. O. Causes of delay in the global construction industry: A meta analytical review. (2020). International Journal of Construction Managementt, 22(8), 1395–1407. online. https://doi.org/10.1080/15623599.2020.1716132
  • Saunders, R. (1992). Project management: A systems perspective. International Journal of Project Management, 10(3), 153–159. https://doi.org/10.1016/0263-7863(92)90004-S
  • Sekar, G., Viswanathan, K., & Sambasivan, M. (2018). Effects of project-related and organizational-related factors on five dimensions of project performance: A study across the construction sectors in Malaysia. Engineering Management Journal, 30(4), 247–261. https://doi.org/10.1080/10429247.2018.1485000
  • Senesi, C., Javernick, A., & Molenaar, K. R. (2015). Benefits and barriers to applying probabilistic risk analysis on engineering and construction projects. Engineering Management Journal, 27(2), 49–57. https://doi.org/10.1080/10429247.2015.1035965
  • Tarjan, R. (1972). Depth-first search and linear graph algorithms. SIAM Journal of Computing, 1(2), 146–160. https://doi.org/10.1137/0201010
  • Tavakolan, M., & Etemadinia, H. (2017). Fuzzy weighted interpretive structural modelling: Improved method for identification of risk interactions in construction projects. Journal of Construction Engineering and Management, 143(11). https://doi.org/10.1061/(ASCE)CO.1943-7862.0001395
  • Tohumcu, Z., & Karasakal, E. (2010). R&D project performance evaluation with multiple and interdependent criteria. IEEE Transactions on Engineering Management, 57(4), 620–633. https://doi.org/10.1109/TEM.2009.2036159
  • Wasserman, S., & Faust, K. (1994). Social network analysis: Methods and applications. Cambridge University Press.
  • Yang, J.-B., & Ou, S.-F. (2008). Using structural equation modelling to analyse relationships among key causes of delay in construction. Canadian Journal of Civil Engineering, 35(4), 321–332. https://doi.org/10.1139/L07-101
  • Yildiz, A. E., Dikmen, I., Birgonul, M. T., Ercoskun, K., & Alten, S. (2014). A knowledge-based risk mapping tool for cost estimation of international construction projects. Automation in Construction, 43, 144–155. https://doi.org/10.1016/j.autcon.2014.03.010
  • Zadeh, L. (1976). Fuzzy-algorithmic approach to the definition of complex or imprecise concepts. International Journal of Man-Machine Studies, 8(3), 249–291. https://doi.org/10.1016/S0020-7373(76)80001-6
  • Zarei, B., Sharifi, H., & Chaghouee, Y. (2018). Delay causes analysis in complex construction projects: A semantic network analysis approach. Production Planning & Control, 29(1), 29–40. https://doi.org/10.1080/09537287.2017.1376257
  • Zidane, Y., & Andersen, B. (2018). The top 10 universal delay factors in construction projects. International Journal of Managing Projects in Business, 11(3), 650–672. https://doi.org/10.1108/IJMPB-05-2017-0052

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.