194
Views
0
CrossRef citations to date
0
Altmetric
Articles

Diazoxide attenuates DOX-induced cardiotoxicity in cultured rat myocytes

ORCID Icon, ORCID Icon, , ORCID Icon & ORCID Icon

References

  • Adam M, Singh KK, Connelly KA. 2019. P300-mediated inactivation of p53 protects against doxorubicin-induced cardiotoxicity. Eur Heart J. 40:ehz746.0390. doi: 10.1093/eurheartj/ehz746.0390.
  • American Cancer Society. 2018. Global cancer facts & figures. 4th ed. Atlanta: American Cancer Society.
  • Anastacio MM, Kanter EM, Keith AD, Schuessler RB, Nichols CG, Lawton JS. 2013. Inhibition of succinate dehydrogenase by diazoxide is independent of the KATP channel subunit SUR 1. J Am Coll Surg. 216:1144–1149. doi: 10.1016/j.jamcollsurg.2013.01.048.
  • Bursch W, Hochegger K, Torok L, Marian B, Ellinger A, Hermann RS. 2000. Autophagic and apoptotic types of programmed cell death exhibit different fates of cytoskeletal filaments. J Cell Sci. 113:1189–1198. doi: 10.1242/jcs.113.7.1189.
  • Desouza M, Gunning PW, Stehn JR. 2012. The actin cytoskeleton as a sensor and mediator of apoptosis. Bioarchitecture. 2:75–87. doi: 10.4161/bioa.20975.
  • Dröse S, Brandt U, Hanley PJ. 2006. K±independent actions of diazoxide question the role of inner membrane KATP channels in mitochondrial cytoprotective signaling. J Biol Chem. 281:23733–23739. doi: 10.1074/jbc.M602570200.
  • Du Q, Jovanović S, Clelland A, Sukhodub A, Budas G, Phelan K, Murray-Tait V, Malone L, Joyanmć A. 2006. Overexpression of SUR2A generates a cardiac phenotype resistant to ischemia. FASEB J. 20:1131–1141. doi: 10.1096/fj.05-5483com.
  • Dursun N, Taşkın E, Yerer Aycan MB, Sahin L. 2011. Selenium-mediated cardioprotection against adriamycin-induced mitochondrial damage. Drug Chem Toxicol. 34:199–207. doi: 10.3109/01480545.2010.538693.
  • Erel O. 2004. A novel automated direct measurement method for total antioxidant capacity using a new generation, more stable ABTS radical cation. Clin Biochem. 37:277–285. doi: 10.1016/j.clinbiochem.2003.11.015.
  • Erel O. 2005. A new automated colorimetric method for measuring total oxidant status. Clin Biochem. 38:1103–1111. doi: 10.1016/j.clinbiochem.2005.08.008.
  • Garlid KD, Dos Santos P, Xie Z-J, Costa ADT, Paucek P. 2003. Mitochondrial potassium transport: the role of the mitochondrial ATP-sensitive K(+) channel in cardiac function and cardioprotection. Biochim Biophys Acta. 1606:1–21. doi: 10.1016/s0005-2728(03)00109-9.
  • Gorini S, De Angelis A, Berrino L, Malara N, Rosano G, Ferraro E. 2018. Chemotherapeutic drugs and mitochondrial dysfunction: focus on doxorubicin, trastuzumab, and sunitinib. Oxid Med Cell Longev. 2018:7582730. doi: 10.1155/2018/7582730.
  • Gourlay CW, Ayscough KR. 2005a. The actin cytoskeleton in ageing and apoptosis. FEMS Yeast Res. 5:1193–1198. doi: 10.1016/j.femsyr.2005.08.001.
  • Gourlay CW, Ayscough KR. 2005b. The actin cytoskeleton: a key regulator of apoptosis and ageing? Nat Rev Mol Cell Biol. 6:583–589. doi: 10.1038/nrm1682.
  • Gratia S, Kay L, Potenza L, Seffouh A, Novel-Chaté V, Schnebelen C, Sestili P, Schlattner U, Tokarska-Schlattner M. 2012. Inhibition of AMPK signalling by doxorubicin: at the crossroads of the cardiac responses to energetic, oxidative, and genotoxic stress. Cardiovasc Res. 95:290–299. doi: 10.1093/cvr/cvs134.
  • Grethe S, Coltella N, Di Renzo MF, Pörn-Ares MI. 2006. p38 MAPK downregulates phosphorylation of bad in doxorubicin-induced endothelial apoptosis. Biochem Biophys Res Commun. 347:781–790. doi: 10.1016/j.bbrc.2006.06.159.
  • Guven C. 2018. The effect of diazoxide on norepinephrine-induced cardiac hypertrophy, in vitro. Cell Mol Biol (Noisy-le-Grand). 64:50–54. doi: 10.14715/cmb/2018.64.10.8.
  • Hole LD, Larsen TH, Fossan KO, Limé F, Schjøtt J. 2014. Diazoxide protects against doxorubicin-induced cardiotoxicity in the rat. BMC Pharmacol Toxicol. 15:28. doi: 10.1186/2050-6511-15-28.
  • Horenstein MS, Vander Heide RS, L’Ecuyer TJ. 2000. Molecular basis of anthracycline-induced cardiotoxicity and its prevention. Mol Genet Metab. 71:436–444. doi: 10.1006/mgme.2000.3043.
  • Huang W-C, Chio C-C, Chi K-H, Wu H-M, Lin W-W. 2002. Superoxide anion-dependent Raf/MEK/ERK activation by peroxisome proliferator activated receptor gamma agonists 15-deoxy-delta(12,14)-prostaglandin J(2), ciglitazone, and GW1929. Exp Cell Res. 277:192–200. doi: 10.1006/excr.2002.5546.
  • Ichinose M, Yonemochi H, Sato T, Saikawa T. 2003. Diazoxide triggers cardioprotection against apoptosis induced by oxidative stress. Am J Physiol-Heart Circ Physiol. 284:H2235–H2241. doi: 10.1152/ajpheart.01073.2002.
  • Jacquet S, Zarrinpashneh E, Chavey A, Ginion A, Leclerc I, Viollet B, Rutter G, Bertrand L, Marber M. 2007. The relationship between p38 mitogen-activated protein kinase and AMP-activated protein kinase during myocardial ischemia. Cardiovasc Res. 76:465–472. doi: 10.1016/j.cardiores.2007.08.001.
  • Kicińska A, Szewczyk A. 2003. Protective effects of the potassium channel opener-diazoxide against injury in neonatal rat ventricular myocytes. Gen Physiol Biophys. 22:383–395.
  • Kim M-Y, Kim MJ, Yoon IS, Ahn JH, Lee SH, Baik EJ, Moon C-H, Jung Y-S. 2006. Diazoxide acts more as a PKC-epsilon activator, and indirectly activates the mitochondrial K(ATP) channel conferring cardioprotection against hypoxic injury. Br J Pharmacol. 149:1059–1070. doi: 10.1038/sj.bjp.0706922.
  • Kim M-J, Park I-J, Yun H, Kang I, Choe W, Kim S-S, Ha J. 2010. AMP-activated protein kinase antagonises pro-apoptotic extracellular signal-regulated kinase activation by inducing dual-specificity protein phosphatases in response to glucose deprivation in HCT116 carcinoma. J Biol Chem. 285:14617–14627. doi: 10.1074/jbc.M109.085456.
  • Kimura S, Zhang G-X, Nishiyama A, Shokoji T, Yao L, Fan Y-Y, Rahman M, Abe Y. 2005. Mitochondria-derived reactive oxygen species and vascular MAP kinases: comparison of angiotensin II and diazoxide. Hypertens. 45:438–444. doi: 10.1161/01.HYP.0000157169.27818.ae.
  • Kopustinskiene DM, Liobikas J, Skemiene K, Malinauskas F, Toleikis A. 2010. Direct effects of KATP channel openers pinacidil and diazoxide on oxidative phosphorylation of mitochondria in situ. Cell Physiol Biochem. 25:181–186. doi: 10.1159/000276552.
  • Kowaltowski AJ, Seetharaman S, Paucek P, Garlid KD. 2001. Bioenergetic consequences of opening the ATP-sensitive K(+) channel of heart mitochondria. Am J Physiol Heart Circ Physiol. 280:H649–657. doi: 10.1152/ajpheart.2001.280.2.H649.
  • Liu Z-W, Niu X-L, Chen K-L, Xing Y-J, Wang X, Qiu C, Gao D-F. 2013. Selenium attenuates adriamycin-induced cardiac dysfunction via restoring expression of ATP-sensitive potassium channels in rats. Biol Trace Elem Res. 153:220–228. doi: 10.1007/s12011-013-9641-8.
  • Liu B, Zhu X, Chen C-L, Hu K, Swartz HM, Chen Y-R, He G. 2010. Opening of the mitoKATP channel and decoupling of mitochondrial complex II and III contribute to the suppression of myocardial reperfusion hyperoxygenation. Mol Cell Biochem. 337:25–38. doi: 10.1007/s11010-009-0283-2.
  • Lotrionte M, Biondi-Zoccai G, Abbate A, Lanzetta G, D’Ascenzo F, Malavasi V, Peruzzi M, Frati G, Palazzoni G. 2013. Review and meta-analysis of incidence and clinical predictors of anthracycline cardiotoxicity. Am J Cardiol. 112:1980–1984. doi: 10.1016/j.amjcard.2013.08.026.
  • Luo S, Hieu TB, Ma F, Yu Y, Cao Z, Wang M, Wu W, Mao Y, Rose P, Law BY-K, Zhu YZ. 2017. ZYZ-168 alleviates cardiac fibrosis after myocardial infarction through inhibition of ERK1/2-dependent ROCK1 activation. Sci Rep. 7:43242. doi: 10.1038/srep43242.
  • Ma X, Deng D, Chen W. 2017. Inhibitors and activators of SOD, GSH‐Px, and CAT. In: Senturk M, editor. Enzyme inhibitors and activators. InTechOpen; p. 207–224.
  • McGowan TA, Madesh M, Zhu Y, Wang L, Russo M, Deelman L, Henning R, Joseph S, Hajnoczky G, Sharma K. 2002. TGF-β-induced Ca 2+ influx involves the type III IP 3 receptor and regulates actin cytoskeleton. Am J Physiol Renal Physiol. 282:F910–F920. doi: 10.1152/ajprenal.00252.2001.
  • Mohammed Abdul KS, Jovanović S, Jovanović A. 2017. Exposure to 15% oxygen in vivo up‐regulates cardioprotective SUR2A without affecting ERK1/2 and AKT: a crucial role for AMPK. J Cell Mol Med. 21:1342–1350. doi: 10.1111/jcmm.13064.
  • Molehin OR, Adeyanju AA, Adefegha SA, Oyeyemi AO, Idowu KA. 2019. Protective mechanisms of protocatechuic acid against doxorubicin-induced nephrotoxicity in rat model. J Basic Clin Physiol Pharmacol. 30:20180191. doi: 10.1515/jbcpp-2018-0191.
  • Ozcan C, Holmuhamedov EL, Jahangir A, Terzic A. 2001. Diazoxide protects mitochondria from anoxic injury: implications for myopreservation. J Thorac Cardiovasc Surg. 121:298–306. doi: 10.1067/mtc.2001.111421.
  • Ozdogan K, Taskin E, Dursun N. 2011. Protective effect of carnosine on adriamycin-induced oxidative heart damage in rats. Anatol J Cardiol. 11:3–10. doi: 10.5152/akd.2011.003.
  • Pecoraro M, Ciccarelli M, Fiordelisi A, Iaccarino G, Pinto A, Popolo A. 2018. Diazoxide improves mitochondrial connexin 43 expression in a mouse model of doxorubicin-induced cardiotoxicity. Int J Mol Sci. 19:757. doi: 10.3390/ijms19030757.
  • Pereira GC, Pereira SP, Tavares LC, Carvalho FS, Magalhães-Novais S, Barbosa IA, Santos MS, Bjork J, Moreno AJ, Wallace KB, Oliveira PJ. 2016. Cardiac cytochrome c and cardiolipin depletion during anthracycline-induced chronic depression of mitochondrial function. Mitochondrion. 30:95–104. doi: 10.1016/j.mito.2016.07.005.
  • Rabinovitch RC, Samborska B, Faubert B, Ma EH, Gravel S-P, Andrzejewski S, Raissi TC, Pause A, St.-Pierre J, Jones RG. 2017. AMPK maintains cellular metabolic homeostasis through regulation of mitochondrial reactive oxygen species. Cell Rep. 21:1–9. doi: 10.1016/j.celrep.2017.09.026.
  • Sargsyan E, Ortsäter H, Thorn K, Bergsten P. 2008. Diazoxide-induced beta-cell rest reduces endoplasmic reticulum stress in lipotoxic beta-cells. J Endocrinol. 199:41–50. doi: 10.1677/JOE-08-0251.
  • Shen K-Z, Munhall AC, Johnson SW. 2019. Phosphoinositol metabolism affects AMP kinase-dependent K-ATP currents in rat substantia nigra dopamine neurons. Brain Res. 1706:32–40. doi: 10.1016/j.brainres.2018.10.027.
  • Szewczyk A, Skalska J, Głąb M, Kulawiak B, Malińska D, Koszela-Piotrowska I, Kunz WS. 2006. Mitochondrial potassium channels: from pharmacology to function. Biochim Biophys Acta. 1757:715–720. doi: 10.1016/j.bbabio.2006.05.002.
  • Taskin E, Guven C, Kaya ST, Sahin L, Kocahan S, Degirmencioglu AZ, Gur FM, Sevgiler Y. 2019. The role of toll-like receptors in the protective effect of melatonin against doxorubicin-induced pancreatic beta cell toxicity. Life Sci. 233:116704. doi: 10.1016/j.lfs.2019.116704.
  • Taskin E, Kindap EK, Ozdogan K, Aycan MBY, Dursun N. 2016. Acute adriamycin-induced cardiotoxicity is exacerbated by angiotension II. Cytotechnology. 68:33–43. doi: 10.1007/s10616-014-9748-6.
  • Tinker A, Aziz Q, Thomas A. 2014. The role of ATP-sensitive potassium channels in cellular function and protection in the cardiovascular system. Br J Pharmacol. 171:12–23. doi: 10.1111/bph.12407.
  • Tokarska-Schlattner M, Zaugg M, Zuppinger C, Wallimann T, Schlattner U. 2006. New insights into doxorubicin-induced cardiotoxicity: the critical role of cellular energetics. J Mol Cell Cardiol. 41:389–405. doi: 10.1016/j.yjmcc.2006.06.009.
  • Wang S, Cone J, Liu Y. 2001. Dual roles of mitochondrial K ATP channels in diazoxide-mediated protection in isolated rabbit hearts. Am J Physiol Heart Circ Physiol. 280:H246–H255. doi: 10.1152/ajpheart.2001.280.1.H246.
  • Wei L, Surma M, Gough G, Shi S, Lambert-Cheatham N, Chang J, Shi J. 2015. Dissecting the mechanisms of doxorubicin and oxidative stress-induced cytotoxicity: the involvement of actin cytoskeleton and ROCK1. PLoS One. 10:e0131763. doi: 10.1371/journal.pone.0131763.
  • Wojtera E, Konior A, Fedoryszak-Kuśka N, Beręsewicz A. 2014. Obligatory role of intraluminal O2− in acute endothelin-1 and angiotensin II signaling to mediate endothelial dysfunction and MAPK activation in Guinea-pig hearts. Int J Mol Sci. 15:19417–19443. doi: 10.3390/ijms151119417.
  • Yilmaz TU, Yazihan N, Dalgic A, Kaya E, Salman B, Kocak M, Akcil E. 2015. Role of ATP-dependent K channels in the effects of erythropoietin in renal ischaemia injury. Indian J Med Res. 141:807–815. doi: 10.4103/0971-5916.160713.
  • Zare MFR, Rakhshan K, Aboutaleb N, Nikbakht F, Naderi N, Bakhshesh M, Azizi Y. 2019. Apigenin attenuates doxorubicin induced cardiotoxicity via reducing oxidative stress and apoptosis in male rats. Life Sci. 232:116623. doi: 10.1016/j.lfs.2019.116623.
  • Zhang X, Li J, Cheng Y, Yi J, Liu X, Cheng W. 2018. Downregulation of CUEDC2 prevents doxorubicin-induced cardiotoxicity in H9c2 cells. Mol Med Rep. 18:855–863. doi: 10.3892/mmr.2018.9072.
  • Zhu Z, Li R, Lv Y, Zeng W. 2019. Melatonin protects rabbit spermatozoa from cryo-damage via decreasing oxidative stress. Cryobiology. 88:1–8. doi: 10.1016/j.cryobiol.2019.04.009.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.